Fermata β Fine-tuned Gemma AI Assistant
Fermata is a fine-tuned version of Google's gemma-2b-it, trained to act as a personalized AI assistant that responds with character, helpfulness, and consistency. It is designed to follow instructions, engage in conversation, and adapt to specific behavioral traits or personas.
Model Details
- Base Model:
google/gemma-2b-it - Fine-tuned by: @ranggafermata
- Framework: π€ Transformers + PEFT + LoRA (Unsloth)
- Precision: 4-bit quantized (NF4) during training, merged to full F32 weights
- Model Size: ~2.61B parameters
Training Details
- LoRA Configuration:
r: 16alpha: 16dropout: 0.05- Target modules: attention & MLP projection layers
- Epochs: 12
- Dataset: Custom instruction-response pairs built to teach Fermata its identity and assistant behavior
- Tooling: Unsloth, π€ PEFT,
trl'sSFTTrainer
Files Included
- β
model-00001-of-00003.safetensorstomodel-00003-of-00003.safetensors - β
config.json,tokenizer.model,tokenizer.json - β
generation_config.json,chat_template.jinja - β Adapter weights are removed (merged into base model)
Example Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("ranggafermata/Fermata", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("ranggafermata/Fermata")
prompt = "### Human:\nWho are you?\n\n### Assistant:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 15