ratish/DBERT_CleanDesc_Collision_v2.1.4

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3438
  • Validation Loss: 1.4467
  • Train Accuracy: 0.5897
  • Epoch: 11

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4575, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.6148 1.7151 0.3077 0
1.4783 1.7263 0.3077 1
1.3926 1.6779 0.4103 2
1.2462 1.5778 0.4359 3
1.0592 1.5154 0.4359 4
0.8814 1.5370 0.4615 5
0.7554 1.4250 0.5385 6
0.6303 1.4385 0.5641 7
0.5458 1.3870 0.4872 8
0.4808 1.3459 0.5385 9
0.4098 1.5049 0.5385 10
0.3438 1.4467 0.5897 11

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support