ratish/DBERT_CleanDesc_Collision_v2.5

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.4855
  • Validation Loss: 1.0752
  • Train Accuracy: 0.6410
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3040, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.5849 1.6211 0.3333 0
1.4751 1.5922 0.3333 1
1.3947 1.4869 0.4359 2
1.2663 1.3455 0.5641 3
1.0385 1.2647 0.5897 4
0.9351 1.2546 0.5897 5
0.8036 1.2566 0.5897 6
0.7181 1.1101 0.6154 7
0.6027 1.1042 0.6410 8
0.4855 1.0752 0.6410 9

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support