ratish/DBERT_CleanDesc_v1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3845
  • Validation Loss: 0.8665
  • Train Accuracy: 0.75
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.2264 2.0161 0.425 0
1.7311 1.6541 0.6 1
1.3066 1.3472 0.6 2
0.9729 1.1490 0.65 3
0.7551 1.0330 0.725 4
0.5916 0.9158 0.725 5
0.4522 0.8656 0.725 6
0.3845 0.8665 0.75 7

Framework versions

  • Transformers 4.27.4
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support