ratish/DBERT_ZS_CleanCollision_v1.1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0709
  • Validation Loss: 1.5936
  • Train Accuracy: 0.5862
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9960, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.9871 1.0630 0.3448 0
0.8663 1.0509 0.4138 1
0.6717 0.8617 0.5862 2
0.4366 0.8978 0.6897 3
0.2911 0.6636 0.7241 4
0.2351 1.0674 0.6897 5
0.1412 1.1587 0.6552 6
0.0980 1.3062 0.6207 7
0.0748 1.2605 0.6552 8
0.0709 1.5936 0.5862 9

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support