Built with Axolotl

See axolotl config

axolotl version: 0.11.0.dev0

adapter: lora
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 1224d066-cf9e-496b-a842-6feca1264fd2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/axolotl/data
  type:
    field_input: input
    field_instruction: instruct
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /workspace/axolotl/data/1224d066-cf9e-496b-a842-6feca1264fd2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/outputs/1224d066-cf9e-496b-a842-6feca1264fd2/tournament-tourn_393e1bd45b04d4b6_20250721-1224d066-cf9e-496b-a842-6feca1264fd2-5FLb19Vd
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

workspace/axolotl/outputs/1224d066-cf9e-496b-a842-6feca1264fd2/tournament-tourn_393e1bd45b04d4b6_20250721-1224d066-cf9e-496b-a842-6feca1264fd2-5FLb19Vd

This model was trained from scratch on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 10

Training results

Framework versions

  • PEFT 0.15.2
  • Transformers 4.53.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rayonlabs/tournament-tourn_393e1bd45b04d4b6_20250721-1224d066-cf9e-496b-a842-6feca1264fd2-5FLb19Vd

Adapter
(240)
this model