|
from flask import Flask, render_template, request
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
model_path = "./finetuned_codegen"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float32)
|
|
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
device = torch.device("cpu")
|
|
model.to(device)
|
|
|
|
@app.route("/", methods=["GET", "POST"])
|
|
def index():
|
|
generated_code = ""
|
|
prompt = ""
|
|
if request.method == "POST":
|
|
prompt = request.form["prompt"]
|
|
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128).to(device)
|
|
outputs = model.generate(
|
|
**inputs,
|
|
max_length=200,
|
|
num_return_sequences=1,
|
|
pad_token_id=tokenizer.eos_token_id,
|
|
do_sample=True,
|
|
temperature=0.2,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
no_repeat_ngram_size=3
|
|
)
|
|
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
if generated_code.startswith(prompt):
|
|
generated_code = generated_code[len(prompt):].strip()
|
|
|
|
generated_code = generated_code.split("\n")[0].strip() if "\n" in generated_code else generated_code
|
|
return render_template("index.html", generated_code=generated_code, prompt=prompt)
|
|
|
|
if __name__ == "__main__":
|
|
app.run(debug=True) |