RAVDESS_Speaker_Id_spec_dataset_vit_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8945
  • Accuracy: 0.6898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 3.2704 0.0648
3.565 2.0 16 2.9777 0.1204
2.9674 3.0 24 2.4613 0.2963
2.2864 4.0 32 1.9951 0.4028
1.5685 5.0 40 1.6858 0.5
1.5685 6.0 48 1.4689 0.5509
1.0277 7.0 56 1.3074 0.6389
0.6389 8.0 64 1.2081 0.6713
0.3924 9.0 72 1.1233 0.6944
0.2291 10.0 80 1.0603 0.6991
0.2291 11.0 88 0.9899 0.7222
0.129 12.0 96 0.9880 0.6713
0.0812 13.0 104 0.9722 0.7037
0.0481 14.0 112 0.9296 0.7176
0.0325 15.0 120 0.9181 0.6852
0.0325 16.0 128 0.9013 0.7176
0.0212 17.0 136 0.9077 0.6944
0.0151 18.0 144 0.8954 0.7037
0.0121 19.0 152 0.8941 0.7037
0.0103 20.0 160 0.8945 0.6898

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/RAVDESS_Speaker_Id_spec_dataset_vit_1

Finetuned
(48)
this model

Evaluation results