rishavranaut's picture
rishavranaut/Mistral_final_Task2_2.0
768d2d1 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: Mistral_final_Task2_2.0
    results: []

Mistral_final_Task2_2.0

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5570
  • Accuracy: 0.8943
  • Precision: 0.9184
  • Recall: 0.8661
  • F1 score: 0.8915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
0.9274 0.5450 200 0.6669 0.8371 0.9072 0.7521 0.8224
0.5321 1.0899 400 1.0293 0.7986 0.9861 0.6068 0.7513
0.4279 1.6349 600 1.0278 0.7586 0.6904 0.9402 0.7961
0.3054 2.1798 800 0.4428 0.8714 0.8575 0.8917 0.8743
0.2297 2.7248 1000 0.5243 0.8743 0.9428 0.7977 0.8642
0.1798 3.2698 1200 0.4710 0.8971 0.9043 0.8889 0.8966
0.158 3.8147 1400 0.5673 0.8986 0.9545 0.8376 0.8923
0.0921 4.3597 1600 0.5847 0.8743 0.8380 0.9288 0.8811
0.063 4.9046 1800 0.5570 0.8943 0.9184 0.8661 0.8915

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1