ynat-model / README.md
robotshin's picture
robotshin/
7212953 verified
metadata
library_name: transformers
language:
  - ko
license: apache-2.0
base_model: monologg/koelectra-base-v3-discriminator
tags:
  - text-classification
  - koELECTRA
  - Korean-NLP
  - topic-classification
  - news-classification
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ynat-model
    results: []

ynat-model

This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4131
  • Accuracy: 0.8601
  • F1: 0.8614
  • Precision: 0.8477
  • Recall: 0.8773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3952 1.0 714 0.4250 0.8523 0.8525 0.8336 0.8755
0.2963 2.0 1428 0.3992 0.8574 0.8583 0.8454 0.8746
0.2176 3.0 2142 0.4131 0.8601 0.8614 0.8477 0.8773

Framework versions

  • Transformers 4.54.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4