Apriel Cybersecurity Adapter (DoRA + RAFT)
This is a PEFT adapter for ServiceNow-AI/Apriel-1.5-15b-Thinker fine-tuned for cybersecurity network traffic analysis.
π― Model Type: PEFT Adapter (LoRA/DoRA)
β οΈ IMPORTANT: This repository contains only the adapter weights, not the full model. You need to:
- Load the base model:
ServiceNow-AI/Apriel-1.5-15b-Thinker - Apply these adapters on top
Training Details
Base Model
- Model: ServiceNow-AI/Apriel-1.5-15b-Thinker (15B parameters)
- Architecture: Vision-Language Model (Text-only fine-tuning)
- Fine-tuning Method: DoRA (Weight-Decomposed Low-Rank Adaptation)
- Training Strategy: RAFT (Retrieval Augmented Fine-Tuning)
Training Configuration
- Dataset: NSL-KDD (49,997 training examples)
- Epochs: 1
- Training Steps: 3,125
- Batch Size: 16 (effective)
- Learning Rate: 2e-5
- Trainable Parameters: 275.8M (3.28% of total)
- LoRA Rank: 64
- LoRA Alpha: 128
- Training Duration: 12 hours on A100 GPU
- Final Loss: 0.038-0.092
Attack Categories
- Normal Traffic (53.5%)
- DoS (Denial of Service) (36.5%)
- Probe (9.3%)
- R2L (Remote to Local) (0.8%)
- U2R (User to Root) (0.04%)
Usage
Option 1: Using PEFT Library
from transformers import AutoModelForVision2Seq, AutoProcessor
from peft import PeftModel
import torch
# Load base model
base_model = AutoModelForVision2Seq.from_pretrained(
"ServiceNow-AI/Apriel-1.5-15b-Thinker",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load adapter
model = PeftModel.from_pretrained(
base_model,
"sainikhiljuluri2015/apriel-cybersec-text-only"
)
# Load processor
processor = AutoProcessor.from_pretrained(
"ServiceNow-AI/Apriel-1.5-15b-Thinker",
trust_remote_code=True
)
# Use the model
messages = [
{
"role": "system",
"content": "You are a cybersecurity expert."
},
{
"role": "user",
"content": "Analyze this network traffic for security threats."
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7
)
response = processor.decode(outputs[0], skip_special_tokens=True)
print(response)
Option 2: Merge Adapters with Base Model
from peft import PeftModel, AutoPeftModelForCausalLM
# Load and merge
model = AutoPeftModelForCausalLM.from_pretrained(
"sainikhiljuluri2015/apriel-cybersec-text-only",
trust_remote_code=True
)
# Merge adapters into base model
merged_model = model.merge_and_unload()
# Save merged model
merged_model.save_pretrained("./apriel-merged")
Adapter Files
This repository contains:
adapter_config.json- Adapter configurationadapter_model.safetensors- Trained adapter weights (1.2GB)- Tokenizer files
- Chat template
Intended Use
- Network traffic analysis and intrusion detection
- Cybersecurity threat classification
- Security incident response support
- Educational purposes in cybersecurity training
Limitations
- Text-only fine-tuning (vision capabilities frozen)
- Trained on NSL-KDD dataset patterns
- Requires document context for optimal RAFT performance
- Should be used as decision support, not sole authority
Training Infrastructure
- Platform: Google Colab Pro
- GPU: NVIDIA A100 (40GB)
- Training Time: ~12 hours
- Cost: ~$24
Citation
@misc{apriel-cybersec-2024,
author = {Juluri, Sainikhil},
title = {Apriel Cybersecurity Adapter},
year = {2024},
publisher = {HuggingFace},
howpublished = {\url{https://huggingface.co/sainikhiljuluri2015/apriel-cybersec-text-only}}
}
Acknowledgments
- Base model: ServiceNow-AI/Apriel-1.5-15b-Thinker
- Dataset: NSL-KDD
- Training methodology: DoRA + RAFT
Trained: November 2025
Type: PEFT Adapter (LoRA/DoRA)
Status: Ready for deployment
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for sainikhiljuluri2015/Apriel-1.5-15b-Thinker-CYBERSEC
Base model
ServiceNow-AI/Apriel-1.5-15b-Thinker