InteractiveOmni
InteractiveOmni-4B ๐ค | InteractiveOmni-8B ๐ค | ๐ Paper
Introduction
InteractiveOmni is a unified omni-modal model that can simultaneously receive inputs such as images, audio, text, and video and directly generate coherent text and speech streams, achieving truly integrated interaction.
This is the schematic diagram for multi-turn audio-visual interaction.
Key Features
- Strong Performance Across Modalities: Exhibiting omni-modal understanding and speech generation capabilities. InteractiveOmni outperforms the similarly sized vision-language models, audio-language models and omni-modal models.
- State-of-the-Art Performance: Achieve SOTA results on various open-source benchmarks for image, audio, and video understanding, as well as speech conversation.
- Excellent Interactive Performance: Achieve more intelligent audio-visual experience with multi-turn and long-term memory capabilities.
- Multi-turn Interactive Benchmarks: Propose multi-modal multi-turn benchmark to evaluate multi-turn memory and speech interaction of leading MLLMs.
- On-device Model: the 4B model achieves 97% of the performance with just 50% of the model size compared with 8B model.
Model Architecture
Quickstart
Get the Code
git clone https://github.com/SenseTime-FVG/InteractiveOmni.git
cd InteractiveOmni
pip install -r requirements.txt
We provide an example code to run InteractiveOmni
using ๐ค Transformers
.
Please use transformers>=4.51.0 and FlashAttention2 to ensure the model works normally.
Model Loading
import torch
from transformers import AutoTokenizer, AutoModel
path = "sensefvg/InteractiveOmni-8B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True).eval().cuda()
Inference with Transformers
import torch
from transformers import AutoModel, AutoTokenizer
import torchaudio
path = "sensefvg/InteractiveOmni-8B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=True)
# set the max number of tiles in `max_num`
max_num = 12
frame = 8
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (็บฏๆๆฌๅฏน่ฏ)
messages = [
{
'role': "user",
'content': 'Hello, who are you?',
}
]
response = model.chat(tokenizer, generation_config, messages)
# audio conversation (้ณ้ขๅฏน่ฏ)
messages = [
{
'role': "user",
'content': [
{
"type": "audio",
"audio": "assets/hello_en.wav"
}
]
}
]
response = model.chat(tokenizer, generation_config, messages)
## Generate both audio and text output
messages = [
{
'role': "user",
'content': [
{
"type": "audio",
"audio": "assets/hello_zh.wav"
}
]
}
]
response, wav_response = model.chat(tokenizer, generation_config, messages, generate_audio=True)
torchaudio.save("result.wav", wav_response.cpu(), 24000, format="wav")
# image-text conversation (ๅพๆๅฏน่ฏ)
messages = [
{
'role': "user",
'content': [
{
"type": "image",
"image": 'assets/cat_cup.jpeg'
},
{
"type": "text",
"text": "Please describe the image shortly."
}
]
}
]
response = model.chat(tokenizer, generation_config, messages, max_num)
# image-audio conversation (ๅพ้ณๅฏน่ฏ)
messages = [
{
'role': "user",
'content': [
{
"type": "image",
"image": 'assets/cat_cup.jpeg'
},
{
"type": "audio",
"audio": "assets/describe_img_en.wav"
}
]
}
]
response = model.chat(tokenizer, generation_config, messages, max_num)
## image-audio conversation, generate both audio and text output
messages = [
{
'role': "user",
'content': [
{
"type": "image",
"image": 'assets/cat_cup.jpeg'
},
{
"type": "audio",
"audio": "assets/describe_img_en.wav"
}
]
}
]
response, wav_response = model.chat(tokenizer, generation_config, messages, generate_audio=True)
torchaudio.save("result.wav", wav_response.cpu(), 24000, format="wav")
# video conversation (่ง้ขๅฏน่ฏ)
messages = [
{
'role': "user",
'content': [
{
"type": "video",
"video": 'video_path'
},
{
"type": "text",
"text": "Describe this video in detail."
}
]
}
]
response = model.chat(tokenizer, generation_config, messages, max_num, frame)
Use audio output
- If users need audio output, the system prompt must be set as follows, otherwise the audio output may not work as expected.
You are a highly advanced multimodal conversational AI designed for human-like interaction. You can perceive auditory, visual, speech, and textual inputs, and generate text and speech.
messages = [
{
"role": "system",
"content": "You are a highly advanced multimodal conversational AI designed for human-like interaction. You can perceive auditory, visual, speech, and textual inputs, and generate text and speech."
},
{
'role': "user",
'content': [
{
"type": "audio",
"audio": "assets/hello_zh.wav",
}
]
}
]
response, wav_response = model.chat(tokenizer, generation_config, messages, generate_audio=True)
torchaudio.save("result_none_speaker.wav", wav_response.cpu(), 24000, format="wav")
- Use default speaker to generate output audio.
messages = [
{
"role": "system",
"content": "You are a highly advanced multimodal conversational AI designed for human-like interaction. You can perceive auditory, visual, speech, and textual inputs, and generate text and speech."
},
{
'role': "user",
'content': [
{
"type": "audio",
"audio": "assets/hello_zh.wav",
}
]
}
]
response, wav_response = model.chat(tokenizer, generation_config, messages, generate_audio=True, speaker_embedding=model.default_speaker_embedding)
torchaudio.save("result_default_speaker.wav", wav_response.cpu(), 24000, format="wav")
- Use custom speaker to generate output audio, similar to sound cloning.
messages = [
{
"role": "system",
"content": "You are a highly advanced multimodal conversational AI designed for human-like interaction. You can perceive auditory, visual, speech, and textual inputs, and generate text and speech."
},
{
'role': "user",
'content': [
{
"type": "audio",
"audio": "assets/hello_zh.wav",
}
]
}
]
speaker_embedding = model.extract_speaker_embedding("assets/hello_zh.wav")
response, wav_response = model.chat(tokenizer, generation_config, messages, generate_audio=True, speaker_embedding=speaker_embedding)
torchaudio.save("result_custom_speaker.wav", wav_response.cpu(), 24000, format="wav")
Evaluation
InteractiveOmni achieves state-of-the-art performance across a wide range of multi-modal understanding and speech generation benchmarks.
Image Understanding
Model | MMBench | MMStar | MMMU | MathVista | HallusionBench | AI2D | OCRBench | Avg |
---|---|---|---|---|---|---|---|---|
Vision-Language Model | ||||||||
InternVL3-8B | 82.1 | 68.7 | 62.2 | 70.5 | 49.0 | 85.1 | 88.4 | 72.3 |
InternVL3.5-8B | 79.5 | 69.3 | 73.4 | 78.4 | 54.5 | 84.0 | 84.0 | 74.7 |
Qwen2.5-VL-7B | 82.2 | 64.1 | 58.0 | 68.1 | 51.9 | 84.3 | 88.8 | 71.1 |
Omni Model | ||||||||
GPT-4o-mini | 76.0 | 54.8 | 60.0 | 52.5 | 46.1 | 77.8 | 78.5 | 63.7 |
VITA-1.5 | 76.8 | 60.2 | 52.6 | 66.2 | 44.6 | 79.2 | 74.1 | 64.8 |
Ming-Lite-Omni | 80.8 | 64.7 | 56.3 | 71.6 | 55.0 | 83.1 | 88.4 | 71.4 |
Qwen2.5-Omni-7B | 81.3 | 64.0 | 59.2 | 67.9 | 47.4 | 83.2 | 83.4 | 69.5 |
InteractiveOmni-4B | 78.9 | 62.6 | 61.1 | 61.7 | 52.2 | 83.8 | 80.0 | 68.6 |
InteractiveOmni-8B | 81.4 | 66.8 | 66.9 | 68.0 | 61.3 | 84.3 | 83.7 | 73.2 |
Video Understanding
Model | Video-MME (wo sub) |
Video-MME (w sub) |
MLVU (M-Avg) |
LongVideoBench (val total) |
Avg |
---|---|---|---|---|---|
Vision-Language Model | |||||
InternVL3-8B | 66.3 | 68.9 | 71.4 | 58.8 | 66.4 |
InternVL3.5-8B | 66.0 | 68.6 | 70.2 | 62.1 | 66.7 |
Qwen2.5-VL-7B | 65.1 | 71.6 | 70.2 | 56.0 | 64.5 |
Omni Model | |||||
GPT-4o-mini | 64.8 | - | - | - | - |
Qwen2.5-Omni-7B | 64.3 | 72.4 | - | - | - |
InteractiveOmni-4B | 63.3 | 69.3 | 68.0 | 57.0 | 64.4 |
InteractiveOmni-8B | 66.0 | 71.8 | 71.6 | 59.1 | 67.1 |
Audio Understanding
Model | Qwen2-Audio | Step-Audio-Chat | Kimi-Audio | Qwen2.5-Omni-7B | InteractiveOmni-4B | InteractiveOmni-8B | ||
---|---|---|---|---|---|---|---|---|
ASR (wer) | ||||||||
Wenetspeech test-net |
10.60 | 8.75 | 5.37 | 5.90 | 5.40 | 5.04 | ||
Wenetspeech test-meeting |
10.68 | 9.52 | 6.28 | 7.70 | 6.95 | 5.55 | ||
LibriSpeech test-clean |
1.60 | 3.19 | 1.28 | 1.80 | 1.73 | 1.64 | ||
LibriSpeech test-other |
3.60 | 10.67 | 2.42 | 3.40 | 3.69 | 3.41 | ||
Aishell-2 IOS | 4.48 | 3.57 | 2.56 | 2.56 | 2.85 | 2.18 | ||
ChildMandarin | 14.62 | - | - | 19.34 | 17.21 | 14.03 | ||
Audio Understanding | ||||||||
MMAU | 56.60 | - | 65.20 | 65.60 | 72.00 | 67.39 | ||
MELD | 55.30 | 33.54 | 59.13 | 57.00 | 57.16 | 57.55 | ||
ClothoAQA dev |
72.63 | 44.98 | 73.18 | 73.12 | 71.91 | 72.98 | ||
ClothoAQA test |
71.73 | 45.84 | 71.24 | 72.86 | 71.28 | 74.49 |
Omni-modal Understanding
Model | Speech | Sound Event | Music | Avg | ||||
---|---|---|---|---|---|---|---|---|
OmniBench | ||||||||
MiniCPM-o-2.6 | - | - | - | 40.50 | ||||
Baichuan-Omni-1.5 | - | - | - | 42.90 | ||||
Qwen2.5-Omni-7B | 55.25 | 60.00 | 52.83 | 56.13 | ||||
InteractiveOmni-4B | 60.70 | 61.51 | 42.45 | 59.19 | ||||
InteractiveOmni-8B | 60.18 | 62.64 | 55.66 | 60.33 |
Speech-to-text
Datasets | Model | Performance |
---|---|---|
OpenAudioBench Reasoning QA | Llama Questions | Web Questions | TriviaQA | AlpacaEval | Avg |
Qwen2-Audio | 42.77 | 69.67 | 45.20 | 40.30 | 57.19 | 51.03 |
GLM-4-Voice | 47.43 | 76.00 | 55.40 | 51.80 | 57.89 | 57.70 | |
VITA-1.5 | 41.00 | 74.20 | 57.30 | 46.80 | 68.20 | 57.50 | |
Step-Audio-chat | 60.00 | 72.33 | 73.00 | 56.80 | 56.53 | 63.73 | |
Baichuan-Audio | 41.90 | 78.40 | 64.50 | 61.70 | 77.40 | 64.78 | |
Kimi-Audio | 58.02 | 79.33 | 70.20 | 62.10 | 75.73 | 69.08 | |
MiniCPM-o-2.6 | 38.60 | 77.80 | 68.60 | 61.90 | 51.80 | 59.74 | |
Baichuan-Omni-1.5 | 50.00 | 78.50 | 59.10 | 57.20 | 77.90 | 64.54 | |
Qwen2.5-Omni-7B | 63.76 | 75.33 | 62.80 | 57.06 | 72.76 | 66.34 | |
InteractiveOmni-4B | 69.11 | 79.33 | 65.80 | 56.40 | 74.87 | 69.10 | |
InteractiveOmni-8B | 71.68 | 80.67 | 70.30 | 66.50 | 74.57 | 72.74 | |
VoiceBench AlpacaEval | CommonEval | WildVoice | SD-QA | MMSU |
Qwen2-Audio | 3.69 | 3.40 | 3.01 | 35.35 | 35.43 |
GLM-4-Voice | 4.06 | 3.48 | 3.18 | 43.31 | 40.11 | |
VITA-1.5 | 4.21 | 3.66 | 3.48 | 38.88 | 52.15 | |
Step-Audio-chat | 3.99 | 2.99 | 2.93 | 46.84 | 28.72 | |
Baichuan-Audio | 4.41 | 4.08 | 3.92 | 45.84 | 53.19 | |
Kimi-Audio | 4.46 | 3.97 | 4.20 | 63.12 | 62.17 | |
MiniCPM-o-2.6 | 4.42 | 4.15 | 3.94 | 50.72 | 54.78 | |
Baichuan-Omni-1.5 | 4.50 | 4.05 | 4.06 | 43.40 | 57.25 | |
Qwen2.5-Omni-7B | 4.50 | 3.84 | 3.89 | 56.40 | 61.32 | |
InteractiveOmni-4B | 4.27 | 4.20 | 3.94 | 41.41 | 63.24 | |
InteractiveOmni-8B | 4.61 | 4.34 | 4.21 | 44.67 | 65.26 | |
VoiceBench OpenBookQA | IFEval | BBH | AdvBench | Avg |
Qwen2-Audio | 49.01 | 54.70 | 22.57 | 98.85 | 55.32 |
GLM-4-Voice | 52.97 | 52.80 | 24.91 | 88.08 | 57.40 | |
VITA-1.5 | 71.65 | 55.30 | 38.14 | 97.69 | 64.53 | |
Step-Audio-chat | 31.87 | 50.60 | 29.19 | 65.77 | 50.13 | |
Baichuan-Audio | 71.65 | 54.80 | 50.31 | 99.42 | 69.27 | |
Kimi-Audio | 83.52 | 69.70 | 61.10 | 100.0 | 76.91 | |
MiniCPM-o-2.6 | 78.02 | 60.40 | 49.25 | 97.69 | 71.23 | |
Baichuan-Omni-1.5 | 74.51 | 62.70 | 54.54 | 97.31 | 71.32 | |
Qwen2.5-Omni-7B | 80.90 | 66.70 | 53.50 | 99.20 | 73.60 | |
InteractiveOmni-4B | 82.64 | 55.90 | 60.90 | 99.62 | 73.10 | |
InteractiveOmni-8B | 86.37 | 73.30 | 57.99 | 99.42 | 76.69 |
Speech Generation
Model | test-zh | test-en | test-zh-hard | |||||
---|---|---|---|---|---|---|---|---|
TTS Model | ||||||||
MaskGCT | 2.27 | 2.62 | 10.27 | |||||
SeedTTS | 1.12 | 2.25 | 7.59 | |||||
CosyVoice 2 | 1.45 | 2.57 | 6.83 | |||||
MLLM | ||||||||
MinMo | 2.48 | 2.90 | - | |||||
Ming-Lite-Omni | 1.69 | 4.31 | - | |||||
Qwen2.5-Omni-7B | 1.70 | 2.72 | 7.97 | |||||
InteractiveOmni-4B | 1.37 | 3.73 | 8.02 | |||||
InteractiveOmni-8B | 1.56 | 2.33 | 7.92 |
Citation
If you find our paper and code useful in your research, please cite our technical report.
@misc{tong2025interactiveomniunifiedomnimodalmodel,
title={InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue},
author={Wenwen Tong and Hewei Guo and Dongchuan Ran and Jiangnan Chen and Jiefan Lu and Kaibin Wang and Keqiang Li and Xiaoxu Zhu and Jiakui Li and Kehan Li and Xueheng Li and Lumin Li and Chenxu Guo and Jiasheng Zhou and Jiandong Chen and Xianye Wu and Jiahao Wang and Silei Wu and Lei Chen and Hanming Deng and Yuxuan Song and Dinghao Zhou and Guiping Zhong and Ken Zheng and Shiyin Kang and Lewei Lu},
year={2025},
eprint={2510.13747},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2510.13747},
}
- Downloads last month
- 23