This is the overall best translation tune for the Liquid AI Hackathon
See axolotl config
axolotl version: 0.13.0.dev0
base_model: /data/outputs/shisa-v2.1c-lfm2-350m-sft3
chunked_cross_entropy: true
eot_tokens:
- "<|im_end|>"
datasets:
- path: chotto-20251010.sft-tlonly.jsonl
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- assistant
- gpt
- model
user:
- user
- human
roles_to_train: ["assistant"]
dataset_prepared_path: last_run_prepared_sft
output_dir: /data/outputs/shisa-v2.1c-lfm2-350m-sft3-tlonly
sequence_len: 8192
sample_packing: true
flash_attention: true
pad_to_sequence_len: true
neftune_noise_alpha: 5
use_wandb: true
wandb_entity: augmxnt
wandb_project: liquid-hackathon-tokyo
wandb_name: "shisa-v2.1c-lfm2-350m-sft3-tlonly"
# GBS = 128 / 8 GPU / 16 MBS / 1 GAS
gradient_accumulation_steps: 1
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_torch_4bit
lr_scheduler: cosine
learning_rate: 6e-5 # 4.78 @ GBS=128
train_on_inputs: false
group_by_length: false
bf16: true
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
warmup_ratio: 0.03
saves_per_epoch: 1
deepspeed: zero3_bf16.json
weight_decay: 1e-4
data/outputs/shisa-v2.1c-lfm2-350m-sft3-tlonly
This model was trained from scratch on the chotto-20251010.sft-tlonly.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 187
Training results
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+rocm6.4
- Datasets 4.1.1
- Tokenizers 0.22.1
- Downloads last month
- 212