Spanish TTS Model with Emotions and Multiple Voices
This repository contains a fine-tuned Spanish Text-to-Speech (TTS) model based on canopylabs/3b-es_it-pretrain-research_release
. The model supports multiple voices and nuanced emotions, trained using Unsloth and SNAC for audio tokenization.
β‘οΈ Try it online: https://huggingface.co/spaces/sirekist98/orpheustts_spanish_tuned
π¨βπ» Model Summary
- Base model:
canopylabs/3b-es_it-pretrain-research_release
- Fine-tuned with: LoRA adapters (64 rank, alpha 64)
- Audio tokenization: SNAC (24kHz)
- Input format:
source (emotion): text
- Dataset: ~109k samples, 11 emotions Γ 11 speakers
- Training framework: Unsloth + Hugging Face Transformers
π Training Overview
The model was trained on a curated subset of the dataset sirekist98/spanish_tts_noauddataset_24khz
. We selected combinations of speaker (source
) and emotion
with at least 1000 samples, resulting in a balanced dataset of over 109,000 examples.
Each sample was tokenized using SNAC and embedded in a prompt structured as:
source (emotion): text
This prompt was then used to generate audio tokens, enabling the model to learn nuanced emotional prosody and voice control.
We trained the model for 1 epoch using gradient accumulation (batch size 8 Γ 4 steps) with 4-bit quantization on an NVIDIA L4 GPU.
π Inference
You can run inference using the demo space: Orpheus TTS Spanish Fine-Tuned.
To run inference locally with full control:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from snac import SNAC
# --- Minimal config ---
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BASE = "canopylabs/3b-es_it-pretrain-research_release"
LORA = "sirekist98/orpheustts_spanish_finetuned"
SNAC_ID = "hubertsiuzdak/snac_24khz"
VOICE = "alloy"
EMOTION_ID = "intense_fear_dread_apprehension_horror_terror_panic"
TEXT = "Estoy atrapado, por favor ayΓΊdame."
prompt = f"{VOICE} ({EMOTION_ID}): {TEXT}"
# --- Load models ---
tokenizer = AutoTokenizer.from_pretrained(BASE)
base_model = AutoModelForCausalLM.from_pretrained(
BASE,
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32
)
model = PeftModel.from_pretrained(base_model, LORA).to(device).eval()
snac_model = SNAC.from_pretrained(SNAC_ID).to(device)
# --- Prepare input (same as your Space) ---
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
start_tok = torch.tensor([[128259]], dtype=torch.long).to(device)
end_toks = torch.tensor([[128009, 128260]], dtype=torch.long).to(device)
input_ids = torch.cat([start_tok, input_ids, end_toks], dim=1)
MAX_LEN = 4260
pad_len = MAX_LEN - input_ids.shape[1]
pad = torch.full((1, pad_len), 128263, dtype=torch.long).to(device)
input_ids = torch.cat([pad, input_ids], dim=1)
attention_mask = torch.cat(
[torch.zeros((1, pad_len), dtype=torch.long),
torch.ones((1, input_ids.shape[1] - pad_len), dtype=torch.long)],
dim=1
).to(device)
# --- Generate ---
generated = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=1200,
do_sample=True,
temperature=0.6,
top_p=0.95,
repetition_penalty=1.1,
num_return_sequences=1,
eos_token_id=128258,
use_cache=True
)
# --- Post-process (find 128257, remove 128258, multiple of 7, subtract 128266) ---
AUDIO_TOKEN_OFFSET = 128266
token_to_find = 128257
token_to_remove = 128258
idxs = (generated == token_to_find).nonzero(as_tuple=True)
cropped = generated[:, idxs[1][-1].item() + 1:] if len(idxs[1]) > 0 else generated
cleaned = cropped[cropped != token_to_remove]
codes = cleaned[: (len(cleaned) // 7) * 7].tolist()
codes = [int(t) - AUDIO_TOKEN_OFFSET for t in codes]
# --- SNAC decode (same layout as your Space) ---
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(codes) + 1) // 7):
b = 7 * i
if b + 6 >= len(codes):
break
layer_1.append(codes[b + 0])
layer_2.append(codes[b + 1] - 4096)
layer_3.append(codes[b + 2] - 2 * 4096)
layer_3.append(codes[b + 3] - 3 * 4096)
layer_2.append(codes[b + 4] - 4 * 4096)
layer_3.append(codes[b + 5] - 5 * 4096)
layer_3.append(codes[b + 6] - 6 * 4096)
dev_snac = snac_model.quantizer.quantizers[0].codebook.weight.device
layers = [
torch.tensor(layer_1).unsqueeze(0).to(dev_snac),
torch.tensor(layer_2).unsqueeze(0).to(dev_snac),
torch.tensor(layer_3).unsqueeze(0).to(dev_snac),
]
with torch.no_grad():
audio = snac_model.decode(layers).squeeze().cpu().numpy()
# 'audio' is the 24kHz waveform.
# Optional:
# from scipy.io.wavfile import write as write_wav
# write_wav("output.wav", 24000, audio)
π£οΈ Available Voices
You can generate speech using the following voices (source
):
alloy, ash, ballad, coral, echo, fable, nova, onyx, sage, shimmer, verse
π§οΈ Available Emotions for each voice
alloy
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
- intense_sympathy_compassion_warmth_trust_and_tenderness
ash
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_astonishment_surprise_amazement_and_shock
- intense_sympathy_compassion_warmth_trust_and_tenderness
ballad
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
coral
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
- intense_sympathy_compassion_warmth_trust_and_tenderness
echo
- intense_interest_fascination_curiosity_and_intrigue
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sympathy_compassion_warmth_trust_and_tenderness
fable
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_helplessness_powerlessness_desperation_and_submission
- intense_sourness_tartness_and_acidity
nova
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
- intense_sympathy_compassion_warmth_trust_and_tenderness
onyx
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_numbness_detachment_insensitivity_and_apathy
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sympathy_compassion_warmth_trust_and_tenderness
sage
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_astonishment_surprise_amazement_and_shock
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
- intense_sympathy_compassion_warmth_trust_and_tenderness
shimmer
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_confusion_bewilderment_disorientation_and_perplexity
- intense_helplessness_powerlessness_desperation_and_submission
- intense_pride_dignity_self_confidence_and_honor
- intense_sourness_tartness_and_acidity
verse
- intense_interest_fascination_curiosity_and_intrigue
- intense_fear_dread_apprehension_and_horror
- intense_ecstasy_pleasure_bliss_rapture_and_beatitude
- intense_numbness_detachment_insensitivity_and_apathy
- intense_contempt_disdain_loathing_and_detestation
- intense_astonishment_surprise_amazement_and_shock
- intense_helplessness_powerlessness_desperation_and_submission
- intense_sourness_tartness_and_acidity
π Citation
@misc{sirekist2025spanishTTS,
author = {sirekist98},
title = {Spanish TTS Model with Emotions and Multiple Voices},
year = {2025},
howpublished = {\url{https://huggingface.co/sirekist98/spanish_model}}
}
β¨ Acknowledgements
β Questions or Contributions?
Open an issue or contact @sirekist98 on Hugging Face.
Thanks for checking out this model! π
Model tree for sirekist98/orpheustts_spanish_finetuned
Base model
meta-llama/Llama-3.2-3B-Instruct