metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9432
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: >-
Atherosclerosis and coronary heart disease are examples of what type of
body system disease?
sentences:
- >-
Diseases of the cardiovascular system are common and may be life
threatening. Examples include atherosclerosis and coronary heart
disease. A healthy lifestyle can reduce the risk of such diseases
developing. This includes avoiding smoking, getting regular physical
activity, and maintaining a healthy percent of body fat.
- >-
Osmosis Osmosis is the diffusion of water through a semipermeable
membrane according to the concentration gradient of water across the
membrane. Whereas diffusion transports material across membranes and
within cells, osmosis transports only water across a membrane and the
membrane limits the diffusion of solutes in the water. Osmosis is a
special case of diffusion. Water, like other substances, moves from an
area of higher concentration to one of lower concentration. Imagine a
beaker with a semipermeable membrane, separating the two sides or halves
(Figure 3.21). On both sides of the membrane, the water level is the
same, but there are different concentrations on each side of a dissolved
substance, or solute, that cannot cross the membrane. If the volume of
the water is the same, but the concentrations of solute are different,
then there are also different concentrations of water, the solvent, on
either side of the membrane.
- >-
Circadian rhythms are regular changes in biology or behavior that occur
in a 24-hour cycle. In humans, for example, blood pressure and body
temperature change in a regular way throughout each 24-hour day. Animals
may eat and drink at certain times of day as well. Humans have daily
cycles of behavior, too. Most people start to get sleepy after dark and
have a hard time sleeping when it is light outside. In many species,
including humans, circadian rhythms are controlled by a tiny structure
called the biological clock . This structure is located in a gland at
the base of the brain. The biological clock sends signals to the body.
The signals cause regular changes in behavior and body processes. The
amount of light entering the eyes helps control the biological clock.
The clock causes changes that repeat every 24 hours.
- source_sentence: >-
How does a cell's membrane keep extracellular materials from mixing with
it's internal components?
sentences:
- >-
We know that the Universe is expanding. Astronomers have wondered if it
is expanding fast enough to escape the pull of gravity. Would the
Universe just expand forever? If it could not escape the pull of
gravity, would it someday start to contract? This means it would
eventually get squeezed together in a big crunch. This is the opposite
of the Big Bang.
- >-
Physical properties that do not depend on the amount of substance
present are called intensive properties . Intensive properties do not
change with changes of size, shape, or scale. Examples of intensive
properties are as follows in the Table below .
- >-
CHAPTER REVIEW 3.1 The Cell Membrane The cell membrane provides a
barrier around the cell, separating its internal components from the
extracellular environment. It is composed of a phospholipid bilayer,
with hydrophobic internal lipid “tails” and hydrophilic external
phosphate “heads. ” Various membrane proteins are scattered throughout
the bilayer, both inserted within it and attached to it peripherally.
The cell membrane is selectively permeable, allowing only a limited
number of materials to diffuse through its lipid bilayer. All materials
that cross the membrane do so using passive (non energy-requiring) or
active (energy-requiring) transport processes. During passive transport,
materials move by simple diffusion or by facilitated diffusion through
the membrane, down their concentration gradient. Water passes through
the membrane in a diffusion process called osmosis. During active
transport, energy is expended to assist material movement across the
membrane in a direction against their concentration gradient. Active
transport may take place with the help of protein pumps or through the
use of vesicles.
- source_sentence: An infection may be intracellular or extracellular, depending on this?
sentences:
- >-
22.3 Magnetic Fields and Magnetic Field Lines • Magnetic fields can be
pictorially represented by magnetic field lines, the properties of which
are as follows: 1. The field is tangent to the magnetic field line.
Field strength is proportional to the line density. Field lines cannot
cross. Field lines are continuous loops.
- >-
Figure 24.13 The lifecycle of an ascomycete is characterized by the
production of asci during the sexual phase. The haploid phase is the
predominant phase of the life cycle.
- >-
Caffeine is an example of a psychoactive drug. It is found in coffee and
many other products (see Table below ). Caffeine is a central nervous
system stimulant . Like other stimulant drugs, it makes you feel more
awake and alert. Other psychoactive drugs include alcohol, nicotine, and
marijuana. Each has a different effect on the central nervous system.
Alcohol, for example, is a depressant . It has the opposite effects of a
stimulant like caffeine.
- source_sentence: What does water treatment do to water?
sentences:
- >-
Some solutes, such as sodium acetate, do not recrystallize easily.
Suppose an exactly saturated solution of sodium acetate is prepared at
50°C. As it cools back to room temperature, no crystals appear in the
solution, even though the solubility of sodium acetate is lower at room
temperature. A supersaturated solution is a solution that contains more
than the maximum amount of solute that is capable of being dissolved at
a given temperature. The recrystallization of the excess dissolved
solute in a supersaturated solution can be initiated by the addition of
a tiny crystal of solute, called a seed crystal. The seed crystal
provides a nucleation site on which the excess dissolved crystals can
begin to grow. Recrystallization from a supersaturated solution is
typically very fast.
- >-
Figure 23.13, the esophagus runs a mainly straight route through the
mediastinum of the thorax. To enter the abdomen, the esophagus
penetrates the diaphragm through an opening called the esophageal
hiatus.
- >-
Water treatment is a series of processes that remove unwanted substances
from water. More processes are needed to purify water for drinking than
for other uses.
- source_sentence: >-
There are only four possible bases that make up each dna nucleotide:
adenine, guanine, thymine, and?
sentences:
- >-
Metamorphism. This long word means “to change form. “ A rock undergoes
metamorphism if it is exposed to extreme heat and pressure within the
crust. With metamorphism , the rock does not melt all the way. The rock
changes due to heat and pressure. A metamorphic rock may have a new
mineral composition and/or texture.
- >-
Forest and Kim Starr (Flickr:Starr Environmental). Secondary succession
occurs when nature reclaims areas formerly occupied by life . CC BY 2.0.
- >-
The only difference between each nucleotide is the identity of the base.
There are only four possible bases that make up each DNA nucleotide:
adenine (A), guanine (G), thymine (T), and cytosine (C).
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: MNLP M3 Encoder SciQA
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.6120114394661582
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8017159199237369
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8541468064823642
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9275500476644424
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6120114394661582
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.267238639974579
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17082936129647283
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09275500476644424
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6120114394661582
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8017159199237369
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8541468064823642
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9275500476644424
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7690377395004954
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7184669450875366
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7210073638258574
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5977121067683508
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7912297426120114
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8398474737845567
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9151572926596759
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5977121067683508
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26374324753733713
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16796949475691134
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09151572926596759
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5977121067683508
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7912297426120114
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8398474737845567
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9151572926596759
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7558547240171754
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7049529408204341
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7084736712852033
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 192
type: dim_192
metrics:
- type: cosine_accuracy@1
value: 0.5891325071496664
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.778836987607245
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8331744518589133
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.90371782650143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5891325071496664
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.259612329202415
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16663489037178267
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.090371782650143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5891325071496664
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.778836987607245
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8331744518589133
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.90371782650143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7467179313530818
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6964694266648511
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7004357679049269
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.5662535748331744
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7626310772163966
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8265014299332698
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8913250714966635
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5662535748331744
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25421035907213213
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16530028598665394
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08913250714966635
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5662535748331744
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7626310772163966
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8265014299332698
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8913250714966635
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7275517192718437
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6752375656331816
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6793502491099088
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 96
type: dim_96
metrics:
- type: cosine_accuracy@1
value: 0.551954242135367
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7416587225929456
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8093422306959008
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8732125834127741
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.551954242135367
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24721957419764853
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1618684461391802
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08732125834127741
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.551954242135367
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7416587225929456
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8093422306959008
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8732125834127741
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7119774118711802
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.660333348464903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6648689218069684
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5166825548141086
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7044804575786463
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7683508102955195
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8369876072449952
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5166825548141086
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2348268191928821
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1536701620591039
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08369876072449953
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5166825548141086
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7044804575786463
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7683508102955195
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8369876072449952
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6755211859192654
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6239059875618503
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6292715088820261
name: Cosine Map@100
MNLP M3 Encoder SciQA
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'There are only four possible bases that make up each dna nucleotide: adenine, guanine, thymine, and?',
'The only difference between each nucleotide is the identity of the base. There are only four possible bases that make up each DNA nucleotide: adenine (A), guanine (G), thymine (T), and cytosine (C).',
'Metamorphism. This long word means “to change form. “ A rock undergoes metamorphism if it is exposed to extreme heat and pressure within the crust. With metamorphism , the rock does not melt all the way. The rock changes due to heat and pressure. A metamorphic rock may have a new mineral composition and/or texture.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_384
,dim_256
,dim_192
,dim_128
,dim_96
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_384 | dim_256 | dim_192 | dim_128 | dim_96 | dim_64 |
---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_accuracy@3 | 0.8017 | 0.7912 | 0.7788 | 0.7626 | 0.7417 | 0.7045 |
cosine_accuracy@5 | 0.8541 | 0.8398 | 0.8332 | 0.8265 | 0.8093 | 0.7684 |
cosine_accuracy@10 | 0.9276 | 0.9152 | 0.9037 | 0.8913 | 0.8732 | 0.837 |
cosine_precision@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_precision@3 | 0.2672 | 0.2637 | 0.2596 | 0.2542 | 0.2472 | 0.2348 |
cosine_precision@5 | 0.1708 | 0.168 | 0.1666 | 0.1653 | 0.1619 | 0.1537 |
cosine_precision@10 | 0.0928 | 0.0915 | 0.0904 | 0.0891 | 0.0873 | 0.0837 |
cosine_recall@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_recall@3 | 0.8017 | 0.7912 | 0.7788 | 0.7626 | 0.7417 | 0.7045 |
cosine_recall@5 | 0.8541 | 0.8398 | 0.8332 | 0.8265 | 0.8093 | 0.7684 |
cosine_recall@10 | 0.9276 | 0.9152 | 0.9037 | 0.8913 | 0.8732 | 0.837 |
cosine_ndcg@10 | 0.769 | 0.7559 | 0.7467 | 0.7276 | 0.712 | 0.6755 |
cosine_mrr@10 | 0.7185 | 0.705 | 0.6965 | 0.6752 | 0.6603 | 0.6239 |
cosine_map@100 | 0.721 | 0.7085 | 0.7004 | 0.6794 | 0.6649 | 0.6293 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 9,432 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 18.15 tokens
- max: 60 tokens
- min: 10 tokens
- mean: 94.56 tokens
- max: 256 tokens
- Samples:
anchor positive What is the term for atherosclerosis of arteries that supply the heart muscle?
Atherosclerosis of arteries that supply the heart muscle is called coronary heart disease . This disease may or may not have symptoms, such as chest pain. As the disease progresses, there is an increased risk of heart attack. A heart attack occurs when the blood supply to part of the heart muscle is blocked and cardiac muscle fibers die. Coronary heart disease is the leading cause of death of adults in the United States.
What term describes a drug that has an effect on the central nervous system?
Caffeine is an example of a psychoactive drug. It is found in coffee and many other products (see Table below ). Caffeine is a central nervous system stimulant . Like other stimulant drugs, it makes you feel more awake and alert. Other psychoactive drugs include alcohol, nicotine, and marijuana. Each has a different effect on the central nervous system. Alcohol, for example, is a depressant . It has the opposite effects of a stimulant like caffeine.
What scale is used to succinctly communicate the acidity or basicity of a solution?
The pH scale is used to succinctly communicate the acidity or basicity of a solution.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 192, 128, 96, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_192_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_96_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
0.5424 | 10 | 22.4049 | - | - | - | - | - | - |
1.0 | 19 | - | 0.7424 | 0.7315 | 0.7263 | 0.7093 | 0.6919 | 0.6575 |
1.0542 | 20 | 16.6616 | - | - | - | - | - | - |
1.5966 | 30 | 16.8367 | - | - | - | - | - | - |
2.0 | 38 | - | 0.7612 | 0.7520 | 0.7431 | 0.7261 | 0.7097 | 0.6708 |
2.1085 | 40 | 12.8169 | - | - | - | - | - | - |
2.6508 | 50 | 13.7826 | - | - | - | - | - | - |
3.0 | 57 | - | 0.7675 | 0.7548 | 0.7477 | 0.7274 | 0.7125 | 0.6756 |
3.1627 | 60 | 12.4455 | - | - | - | - | - | - |
3.7051 | 70 | 12.2968 | - | - | - | - | - | - |
3.8136 | 72 | - | 0.769 | 0.7559 | 0.7467 | 0.7276 | 0.712 | 0.6755 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}