Spaces:
Sleeping
Sleeping
File size: 1,000 Bytes
995b7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModel
import torch
# โหลดโมเดล Sentence-Transformer
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME)
# สร้าง API
app = FastAPI()
# ฟังก์ชันแปลงข้อความเป็นเวกเตอร์
def get_embedding(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1) # ใช้ค่าเฉลี่ยของ hidden states
return embedding.squeeze().tolist()
# API Endpoint
@app.post("/embed")
async def embed_text(data: dict):
text = data.get("text", "")
if not text:
return {"error": "No text provided"}
vector = get_embedding(text)
return {"text": text, "embedding": vector}
|