AICODER009's picture
Update app.py
d18eb0b verified
# app.py β€” Drilling Dashboard + 3D Trajectory Agent + Voice Chat
# - Upload daily reports -> KPIs + anomaly distribution + Plotly charts
# - Optional 3D Agent: upload Survey PDF + Daily Report -> 3D well path + anomaly markers
# - OpenAI (optional) for anomaly classification + Whisper voice transcription
# - Voice input recorder near Chat
import io, os, re, json, math, tempfile
from typing import Dict, Any, List, Tuple, Optional
import streamlit as st
import pdfplumber
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
# Make uploads work behind HF proxy
# Optional TTS
try:
from gtts import gTTS
GTTS_OK = True
except Exception:
GTTS_OK = False
# Optional voice recorder component
try:
from audio_recorder_streamlit import audio_recorder
HAS_REC = True
except Exception:
HAS_REC = False
st.set_page_config(page_title="Drilling Report Anomaly Dashboard",
layout="wide",
page_icon="πŸ›’οΈ")
# =========================================================
# Helpers
# =========================================================
def extract_period_date(text: str) -> Tuple[pd.Timestamp, pd.Timestamp]:
m = re.search(
r"Period:\s*(\d{4}[-/]\d{2}[-/]\d{2}\s+\d{2}:\d{2})\s*-\s*(\d{4}[-/]\d{2}[-/]\d{2}\s+\d{2}:\d{2})",
text
)
if not m: return (pd.NaT, pd.NaT)
try:
return (pd.to_datetime(m.group(1)), pd.to_datetime(m.group(2)))
except Exception:
return (pd.NaT, pd.NaT)
def infer_date_from_filename(name: str) -> Optional[pd.Timestamp]:
m = re.search(r"(\d{4})[-_](\d{2})[-_](\d{2})", name)
if m:
y, M, d = map(int, m.groups())
try: return pd.Timestamp(year=y, month=M, day=d)
except Exception: pass
nums = re.findall(r"\d{2,4}", name)
for i in range(len(nums)-2):
try:
y = int(nums[i]); M = int(nums[i+1]); d = int(nums[i+2])
if 1990 <= y <= 2100 and 1 <= M <= 12 and 1 <= d <= 31:
return pd.Timestamp(year=y, month=M, day=d)
except: pass
return None
def read_pdf_text_bytes(pdf_bytes: bytes) -> str:
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
pages = [p.extract_text() or "" for p in pdf.pages]
text = "\n".join(pages).replace("\r", "")
text = re.sub(r"[ \t]+", " ", text)
return text
def parse_operations_depth_time(text: str, base_date: pd.Timestamp) -> pd.DataFrame:
rows = []
for line in text.splitlines():
m = re.match(r"(\d{2}:\d{2})\s+(\d{2}:\d{2})\s+(\d+)\b", line.strip())
if m:
start, end, depth = m.groups()
try:
depth = int(depth)
start_dt = pd.to_datetime(f"{base_date.date()} {start}")
end_dt = pd.to_datetime(f"{base_date.date()} {end}")
if end_dt < start_dt: end_dt += pd.Timedelta(days=1)
mid = start_dt + (end_dt - start_dt)/2
rows.append((start_dt, end_dt, mid, depth))
except: pass
return pd.DataFrame(rows, columns=["start", "end", "mid_time", "depth_m"])
def parse_mud_density(text: str, base_date: pd.Timestamp) -> pd.DataFrame:
m_time = re.search(r"Sample Time\s+(\d{2}:\d{2})\s+(\d{2}:\d{2})", text)
m = re.search(r"Fluid Density\s*\(g/cm3\)\s+([\d\.\-]+)\s+([\d\.\-]+)", text)
if not m or not m_time: return pd.DataFrame()
try:
t1, t2 = m_time.groups()
v1, v2 = float(m.group(1)), float(m.group(2))
ts = [pd.to_datetime(f"{base_date.date()} {t1}"),
pd.to_datetime(f"{base_date.date()} {t2}")]
return pd.DataFrame({"time": ts, "density_gcm3": [v1, v2]})
except: return pd.DataFrame()
def parse_bit_record_rop(text: str) -> pd.DataFrame:
m_hole = re.search(r"Hole\s+Made\s*\(last\s*24H\)\s*([\d\.\-]+)", text, re.IGNORECASE)
m_hrs = re.search(r"Hours\s+Drilled\s*\(last\s*24H\)\s*([\d\.\-]+)", text, re.IGNORECASE)
if not m_hole or not m_hrs: return pd.DataFrame()
try:
hole = float(m_hole.group(1)); hrs = float(m_hrs.group(1))
rop = hole/hrs if hrs and hrs>0 else np.nan
return pd.DataFrame([{"hole_made_m": hole, "hours_drilled": hrs, "rop_m_per_hr": rop}])
except: return pd.DataFrame()
def parse_equipment_downtime_minutes(text: str) -> float:
blk = re.split(r"Equipment Failure Infor(?:mation|mation)", text, flags=re.IGNORECASE)
if len(blk) < 2: return 0.0
tail = blk[1]
mins = re.findall(r"\b(\d{1,4})\s*(?:min|)\b", tail)
vals = []
for x in mins:
try:
v = float(x)
if 0 <= v <= 1440: vals.append(v)
except: pass
positives = [v for v in vals if v > 0]
return float(sum(positives) if positives else 0.0)
# =========================================================
# Classifiers (OpenAI / Heuristic)
# =========================================================
ANOMALY_JSON_SCHEMA = {
"name": "AnomalyClassification",
"strict": True,
"schema": {
"type": "object",
"additionalProperties": False,
"properties": {
"is_anomalous": {"type": "boolean"},
"labels": {
"type": "array",
"items": {"type": "string", "enum": ["losses","stuck_pipe","pack_off"]},
"uniqueItems": True
},
"rationale": {"type": "string"},
"spans": {
"type": "array",
"items": {
"type": "object",
"additionalProperties": False,
"properties": {
"label": {"type": "string", "enum": ["losses","stuck_pipe","pack_off"]},
"text": {"type": "string"}
},
"required": ["label","text"]
}
}
},
"required": ["is_anomalous","labels","rationale"]
}
}
SYSTEM_PROMPT = (
"You are a drilling anomaly detector for daily reports. "
"Return ONLY JSON matching the schema. "
"Taxonomy: losses (lost returns / no returns), stuck_pipe, pack_off (packed-off hole / circulation blocked). "
"If no anomaly is present, set is_anomalous=false and labels=[]. "
"If anomalous, include 1-2 short verbatim evidence spans."
)
def build_user_prompt(text: str) -> str:
return "Classify anomalies among ['losses','stuck_pipe','pack_off'].\n\nREPORT TEXT:\n" + text
def classify_with_openai(text: str, model: str, api_key: str) -> Dict[str, Any]:
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
resp = client.responses.create(
model=model,
input=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": build_user_prompt(text)},
],
response_format={"type": "json_schema", "json_schema": ANOMALY_JSON_SCHEMA},
temperature=0
)
raw = getattr(resp, "output_text", None)
if not raw:
raw = resp.output[0].content[0].text # SDK alt path
return json.loads(raw)
except Exception as e:
return {"is_anomalous": False, "labels": [], "rationale": f"LLM failed: {e}", "spans": []}
def heuristic_classify(text: str) -> Dict[str, Any]:
lines = [ln.strip() for ln in text.split("\n") if ln.strip()]
pat_losses = re.compile(r"\b(lost returns?|lost\s+circulation|no returns|lost\s+circ)\b", re.IGNORECASE)
pat_stuck = re.compile(r"\b(stuck\s+pipe|pipe\s+stuck|string\s+stuck|differential\s+sticking)\b", re.IGNORECASE)
pat_pack = re.compile(r"\b(pack(?:ed)?-?\s*off|packed\s+off|hole\s+packed\s+off|circulation\s+blocked)\b", re.IGNORECASE)
labels, spans = set(), []
for ln in lines:
hit = False
if pat_losses.search(ln): labels.add("losses"); hit = True
if pat_pack.search(ln): labels.add("pack_off"); hit = True
if pat_stuck.search(ln): labels.add("stuck_pipe"); hit = True
if hit: spans.append({"label": "/".join(sorted(labels)), "text": ln})
return {
"is_anomalous": bool(labels),
"labels": sorted(labels),
"rationale": "Heuristic keyword match.",
"spans": spans[:3]
}
def extract_event_depths_from_spans(spans: List[Dict[str, str]]) -> List[int]:
depths = []
for s in spans or []:
txt = s.get("text","")
for m in re.finditer(r"\b(\d{3,4})\s?m\b", txt.lower()):
try: depths.append(int(m.group(1)))
except: pass
return depths
# =========================================================
# 3D Trajectory + Ops Anomaly Parser
# =========================================================
# Survey numeric row pattern
def parse_survey_pdf_bytes(pdf_bytes: bytes) -> pd.DataFrame:
rows = []
num = r'[-+]?(?:\d{1,3}(?:,\d{3})*|\d+)(?:\.\d+)?'
row_re = re.compile(
rf'^\s*({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s+({num})\s*({num})\s*$'
)
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
for page in pdf.pages:
txt = page.extract_text() or ""
for line in txt.splitlines():
line = line.strip()
if not line or (line[0].isalpha() and not line.split()[0].replace('.', '', 1).isdigit()):
continue
m = row_re.match(line)
if m:
vals = [float(v.replace(',', '')) for v in m.groups()]
rows.append(vals)
if not rows:
raise ValueError("No survey rows found in this PDF.")
df = pd.DataFrame(rows, columns=[
'MD_m','Incl_deg','Azim_deg','E_m','VS_m','DL_deg_per30m','N_m','BR_deg_per30m','TR_deg_per30m','TVD_m'
])
return df.sort_values('MD_m').reset_index(drop=True)
def recompute_min_curve_with_top_lock(
df: pd.DataFrame,
md_col="MD_m", inc_col="Incl_deg", az_col="Azim_deg",
inc_lock_deg=2.5, lateral_lock_m=8.0, roll_window=7, max_lock_md=300.0, inc_damp_deg=3.0
) -> pd.DataFrame:
d = df[[md_col, inc_col, az_col]].copy().sort_values(md_col).reset_index(drop=True)
md = d[md_col].to_numpy(float)
inc = np.deg2rad(d[inc_col].to_numpy(float))
az = np.deg2rad(d[az_col].to_numpy(float)); az = np.unwrap(az)
n = len(md)
E = np.zeros(n); N = np.zeros(n); TVD = np.zeros(n)
roll_inc = pd.Series(np.rad2deg(inc)).rolling(roll_window, min_periods=1).mean().to_numpy()
search = (md - md[0]) <= max_lock_md
i_lock_end = 0
for i in range(1, n):
if not search[i]: break
if roll_inc[i] >= inc_lock_deg:
i_lock_end = i; break
for i in range(1, n):
dMD = md[i] - md[i-1]
if dMD <= 0: continue
i1, i2 = inc[i-1], inc[i]; a1, a2 = az[i-1], az[i]
if np.rad2deg(i1) < inc_damp_deg and np.rad2deg(i2) < inc_damp_deg: a2 = a1
cos_dl = np.clip(np.sin(i1)*np.sin(i2)*np.cos(a2 - a1) + np.cos(i1)*np.cos(i2), -1.0, 1.0)
dl = np.arccos(cos_dl); RF = 1.0 if dl < 1e-12 else (2.0/dl)*np.tan(dl/2.0)
nx1, ex1, vz1 = np.sin(i1)*np.cos(a1), np.sin(i1)*np.sin(a1), np.cos(i1)
nx2, ex2, vz2 = np.sin(i2)*np.cos(a2), np.sin(i2)*np.sin(a2), np.cos(i2)
dN = 0.5 * dMD * (nx1 + nx2) * RF
dE = 0.5 * dMD * (ex1 + ex2) * RF
dV = 0.5 * dMD * (vz1 + vz2) * RF
if i <= max(i_lock_end,0) and search[i]: dN, dE = 0.0, 0.0
N[i] = N[i-1] + dN; E[i] = E[i-1] + dE; TVD[i] = TVD[i-1] + dV
if i <= i_lock_end and np.hypot(E[i], N[i]) > lateral_lock_m: i_lock_end = i
out = df.copy()
out["E_m"] = E; out["N_m"] = N
out["TVD_m"] = (TVD + float(out["TVD_m"].iloc[0])) if "TVD_m" in out else TVD
return out
# Operations anomalies (by end depth + remark)
_ROW_START = re.compile(r'^\s*(\d{1,2}:\d{2})\s+(\d{1,2}:\d{2})\s+(\d{3,5}(?:\.\d+)?)\b')
RE_LOSSES = re.compile(r'\b(loss|losses|lost\s+(?:returns|mud)|no\s+returns|lost\s+circulation)\b', re.I)
RE_STUCK = re.compile(r'\b(stuck\s+pipe|stuck\b|differential\s+stuck|free\s+pipe|worked\s+pipe|overpull)\b', re.I)
RE_PACKOFF = re.compile(r'\b(pack[- ]?off|packed\s*off|tight\s+hole)\b', re.I)
def _clean_state_prefix(text: str) -> str:
return re.sub(r'^\s*[A-Za-z/ &-]+--\s*[A-Za-z0-9/ &-]+\s*', '', text).strip()
def parse_operations_anomalies_bytes(pdf_bytes: bytes) -> Tuple[Dict[str, List[Dict]], int]:
groups = {"lost_circulation": [], "stuck_pipe": [], "pack_off": [], "other": []}
ops_row_count = 0
with pdfplumber.open(io.BytesIO(pdf_bytes)) as pdf:
for page in pdf.pages:
text = page.extract_text() or ""
lines = [ln.rstrip() for ln in text.splitlines()]
ops_started, block = False, []
for ln in lines:
low = ln.lower()
if not ops_started and "operations" in low:
ops_started = True; continue
if ops_started and ("drilling fluid" in low or "pore pressure" in low or "gas reading" in low or ("casing" in low and "liner" in low)):
break
if ops_started: block.append(ln)
if not block: continue
stitched_rows, current = [], ""
for ln in block:
m = _ROW_START.match(ln)
if m:
if current: stitched_rows.append(current.strip())
current = ln
else:
if current: current += " " + ln.strip()
if current: stitched_rows.append(current.strip())
for row in stitched_rows:
m = _ROW_START.match(row)
if not m: continue
ops_row_count += 1
start_t, end_t, end_depth = m.group(1), m.group(2), float(m.group(3))
rest = _clean_state_prefix(row[m.end():].strip())
remark, times = rest, f"{start_t}-{end_t}"
entry = {"md": end_depth, "remark": remark, "times": times}
matched = False
if RE_LOSSES.search(remark): groups["lost_circulation"].append(entry); matched=True
if RE_STUCK.search(remark): groups["stuck_pipe"].append(entry); matched=True
if RE_PACKOFF.search(remark):groups["pack_off"].append(entry); matched=True
if not matched and re.search(r'\b(kick|influx|trip\s*gas|high\s+gas|h2s)\b', remark, re.I):
groups["other"].append(entry)
# dedupe depths
for k, lst in groups.items():
by_md: Dict[float, Dict] = {}
for e in lst:
key = round(e["md"], 1)
if key not in by_md:
by_md[key] = {"md": e["md"], "remark": e["remark"], "times": e["times"]}
else:
if e["remark"] not in by_md[key]["remark"]:
by_md[key]["remark"] += " | " + e["remark"]
if e["times"] not in by_md[key]["times"]:
by_md[key]["times"] += "," + e["times"]
groups[k] = list(by_md.values())
return groups, ops_row_count
def _suggest_camera_params(x, y, z, base_radius=1.6, base_z=0.9, zoom_factor=0.5):
span_xy = max((x.max() - x.min()), (y.max() - y.min()))
span_z = (z.max() - z.min()); span = max(span_xy, span_z)
radius = (base_radius + (span / 2000.0)) * zoom_factor
z_eye = (base_z + (span / 3000.0)) * (zoom_factor**0.5)
return radius, z_eye
def make_3d_figure(df_xyz: pd.DataFrame, title="3D Well Trajectory"):
x = df_xyz["E_m"].to_numpy(); y = df_xyz["N_m"].to_numpy(); z = -df_xyz["TVD_m"].to_numpy()
md = df_xyz["MD_m"].to_numpy()
radius0, z_eye0 = _suggest_camera_params(x, y, z, zoom_factor=0.5)
camera_init = dict(eye=dict(x=radius0, y=radius0, z=z_eye0))
fig = go.Figure(go.Scatter3d(
x=x, y=y, z=z, mode="lines",
line=dict(width=6, color=md, colorscale="Viridis"),
hovertemplate=("MD: %{customdata[0]:.2f} m<br>"
"E: %{x:.2f} m | N: %{y:.2f} m<br>"
"TVD: %{customdata[1]:.2f} m<extra></extra>"),
customdata=np.column_stack([md, df_xyz["TVD_m"].to_numpy()]),
name="Well trajectory", legendrank=1, showlegend=True
))
fig.update_layout(
title=title, margin=dict(l=0,r=0,t=40,b=0), showlegend=True,
scene=dict(
camera=camera_init, aspectmode="data",
xaxis=dict(title="Easting (m)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
yaxis=dict(title="Northing (m)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
zaxis=dict(title="Depth (m, TVD)", backgroundcolor="white", showgrid=True, gridcolor="lightgrey", zeroline=False),
)
)
return fig
def add_camera_rotation_animation(fig: go.Figure, x, y, z, revolutions=1.0, n_frames=120, zoom_factor=0.5):
radius, z_eye = _suggest_camera_params(x, y, z, zoom_factor=zoom_factor)
angles = np.linspace(0, 2*np.pi*revolutions, n_frames)
frames = [go.Frame(name=f"cam{a:.3f}", layout=dict(scene_camera=dict(eye=dict(x=radius*np.cos(a), y=radius*np.sin(a), z=z_eye)))) for a in angles]
fig.update(frames=frames)
updatemenus = list(fig.layout.updatemenus) if fig.layout.updatemenus else []
updatemenus.append(dict(
type="buttons", direction="left", x=0.50, y=1.08, xanchor="center", yanchor="top", showactive=False,
buttons=[
dict(label="β–Ά Play", method="animate",
args=[None, dict(frame=dict(duration=60, redraw=True), transition=dict(duration=0),
fromcurrent=True, loop=True)]),
dict(label="⏸ Pause", method="animate",
args=[[None], dict(frame=dict(duration=0, redraw=False), transition=dict(duration=0),
mode="immediate")])
]
))
fig.update_layout(updatemenus=updatemenus)
return fig
def _map_md_to_xyz(df_xyz: pd.DataFrame, md_values: List[float]) -> Tuple[List[float], List[float], List[float]]:
xs, ys, zs = [], [], []
arr_md = df_xyz["MD_m"].to_numpy()
for md in md_values:
i = int(np.argmin(np.abs(arr_md - md)))
xs.append(float(df_xyz["E_m"].iloc[i])); ys.append(float(df_xyz["N_m"].iloc[i])); zs.append(float(-df_xyz["TVD_m"].iloc[i]))
return xs, ys, zs
def add_anomaly_category_traces(fig: go.Figure, df_xyz: pd.DataFrame, grouped: dict):
category_style = {
"lost_circulation": {"name": "Lost circulation", "symbol": "diamond", "rank": 100},
"stuck_pipe": {"name": "Stuck pipe", "symbol": "x", "rank": 101},
"pack_off": {"name": "Pack-off", "symbol": "square", "rank": 102},
"other": {"name": "Other (gas/kick)", "symbol": "circle-open", "rank": 103},
}
ordered_keys = ["lost_circulation", "stuck_pipe", "pack_off", "other"]
trace_indices = []
for key in ordered_keys:
items = grouped.get(key, [])
style = category_style[key]
if items:
md_vals = [e["md"] for e in items]
ax, ay, az = _map_md_to_xyz(df_xyz, md_vals)
labels = [f"{style['name']} @ {m:.0f} mMD" for m in md_vals]
hover = []
for e in items:
snippet = (e["remark"][:120] + "…") if len(e["remark"]) > 120 else e["remark"]
hover.append(f"{style['name']}<br>End depth: {e['md']:.0f} mMD<br>Time: {e['times']}<br>Remark: {snippet}")
fig.add_trace(go.Scatter3d(
x=ax, y=ay, z=az, mode="markers+text",
marker=dict(size=6, color="red", symbol=style["symbol"]),
text=labels, textposition="top center",
hovertext=hover, hoverinfo="text",
name=style["name"], legendrank=style["rank"], visible=True, showlegend=True,
))
else:
fig.add_trace(go.Scatter3d(
x=[np.nan], y=[np.nan], z=[np.nan], mode="markers",
marker=dict(size=6, color="red", symbol=style["symbol"], opacity=0),
name=style["name"], legendrank=style["rank"], hoverinfo="skip", visible=True, showlegend=True,
))
trace_indices.append(len(fig.data) - 1)
# Toggle button
visible_all_on = [True] * len(fig.data)
visible_all_off = [True] * len(fig.data)
for i in trace_indices: visible_all_off[i] = False
updatemenus = list(fig.layout.updatemenus) if fig.layout.updatemenus else []
updatemenus.append(dict(
type="buttons", direction="left", x=0.50, y=1.16, xanchor="center", yanchor="top", showactive=False,
buttons=[
dict(label="Anomalies: ON", method="update", args=[{"visible": visible_all_on}]),
dict(label="Anomalies: OFF", method="update", args=[{"visible": visible_all_off}]),
],
))
fig.update_layout(updatemenus=updatemenus)
return fig
# =========================================================
# Sidebar (Left column)
# =========================================================
with st.sidebar:
st.header("Upload & Settings")
# A) Daily report PDFs (same as earlier dashboard)
files = st.file_uploader("Upload daily report PDFs", type=["pdf"], accept_multiple_files=True)
st.caption("Add more files anytime; dashboard updates live.")
# B) 3D Agent (optional)
st.subheader("3D Trajectory Agent (optional)")
traj_pdf = st.file_uploader("Trajectory / Survey PDF", type=["pdf"], key="traj")
anomaly_pdf = st.file_uploader("Daily Report PDF (for 3D anomalies)", type=["pdf"], key="rep3d")
run_3d = st.button("Run 3D Agent")
st.divider()
st.subheader("Classifier")
DEFAULT_OPENAI_KEY = os.getenv("OPENAI_API_KEY", "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")
use_openai = st.toggle("Use OpenAI Responses API", value=False)
model_name = st.text_input("Model name", value="gpt-4o-mini-2024-07-18")
api_key_prefill = "set via Space secret" if DEFAULT_OPENAI_KEY else ""
api_key = st.text_input("OpenAI API Key", type="password", value=api_key_prefill)
if api_key == "set via Space secret":
api_key = DEFAULT_OPENAI_KEY
st.markdown("If OFF or key missing, a heuristic will be used.")
process_btn = st.button("Process files")
# =========================================================
# Session
# =========================================================
if "reports" not in st.session_state: st.session_state.reports = []
if "chat" not in st.session_state: st.session_state.chat = []
if "traj_fig" not in st.session_state: st.session_state.traj_fig = None
if "traj_summary" not in st.session_state: st.session_state.traj_summary = ""
# =========================================================
# Process uploads
# =========================================================
if process_btn and files:
new_items = []
for f in files:
try:
name = f.name
data = f.getvalue()
text = read_pdf_text_bytes(data)
s, e = extract_period_date(text)
inferred = infer_date_from_filename(name)
base_date = s if pd.notna(s) else (inferred if inferred else pd.Timestamp.today().normalize())
ops_df = parse_operations_depth_time(text, base_date)
mud_df = parse_mud_density(text, base_date)
rop_df = parse_bit_record_rop(text)
downtime_min = parse_equipment_downtime_minutes(text)
if use_openai and api_key.strip() and model_name.strip():
cls = classify_with_openai(text, model_name, api_key)
else:
cls = heuristic_classify(text)
evt_depths = extract_event_depths_from_spans(cls.get("spans"))
rec = {
"name": name,
"period_start": s if pd.notna(s) else (inferred if inferred else base_date),
"period_end": e if pd.notna(e) else None,
"ops_df": ops_df.to_dict("records"),
"mud_df": mud_df.to_dict("records"),
"rop_df": rop_df.to_dict("records"),
"downtime_min": float(downtime_min),
"classification": cls,
"event_depths": evt_depths,
"raw_bytes": data, # keep bytes for optional later use
}
new_items.append(rec)
except Exception as ex:
st.error(f"Failed to process {f.name}: {ex}")
existing = {r["name"]: r for r in st.session_state.reports}
for r in new_items: existing[r["name"]] = r
st.session_state.reports = list(existing.values())
st.success(f"Processed {len(new_items)} file(s).")
# =========================================================
# 3D Agent
# =========================================================
def run_trajectory_agent(survey_bytes: bytes, report_bytes: bytes) -> Tuple[go.Figure, str]:
"""
Deterministic 'agent' that:
1) parses survey -> min-curve recompute
2) parses Ops anomalies (end depth, remark, time)
3) renders 3D figure and pins category markers
Returns (figure, short summary).
"""
survey_df = parse_survey_pdf_bytes(survey_bytes)
df_mc = recompute_min_curve_with_top_lock(survey_df)
x = df_mc["E_m"].to_numpy(); y = df_mc["N_m"].to_numpy(); z = -df_mc["TVD_m"].to_numpy()
fig = make_3d_figure(df_mc)
fig = add_camera_rotation_animation(fig, x, y, z, revolutions=1.0, n_frames=120, zoom_factor=0.5)
groups, ops_rows = parse_operations_anomalies_bytes(report_bytes)
counts = {k: len(v) for k, v in groups.items()}
fig = add_anomaly_category_traces(fig, df_mc, groups)
summary = f"Survey rows: {len(survey_df)} | Ops rows parsed: {ops_rows} | Anomalies β€” losses: {counts.get('lost_circulation',0)}, pack_off: {counts.get('pack_off',0)}, stuck_pipe: {counts.get('stuck_pipe',0)}, other: {counts.get('other',0)}."
return fig, summary
if run_3d:
if not traj_pdf or not anomaly_pdf:
st.sidebar.error("Please upload BOTH a trajectory (survey) PDF and a daily report PDF.")
else:
try:
fig3d, summary = run_trajectory_agent(traj_pdf.getvalue(), anomaly_pdf.getvalue())
st.session_state.traj_fig = fig3d
st.session_state.traj_summary = summary
st.sidebar.success("3D Agent completed.")
except Exception as e:
st.sidebar.error(f"3D Agent failed: {e}")
# =========================================================
# Main layout
# =========================================================
st.title("πŸ›’οΈ Drilling Report Anomaly Dashboard")
reports = st.session_state.reports
if not reports:
st.info("Upload daily report PDFs in the sidebar to begin.")
st.stop()
def to_df(reports: List[Dict[str, Any]]) -> pd.DataFrame:
rows = []
for r in reports:
start = r["period_start"]
if isinstance(start, str) and start: start = pd.to_datetime(start)
cls = r["classification"]; labels = cls.get("labels", []) or []
if not labels: labels = ["none"]
for lab in labels:
rows.append({
"name": r["name"],
"date": start.normalize() if isinstance(start, pd.Timestamp) and pd.notna(start) else pd.NaT,
"label": lab, "is_anomalous": (lab != "none"),
"downtime_min": r.get("downtime_min", 0.0),
})
df = pd.DataFrame(rows)
if not df.empty and "date" in df:
mask = df["date"].isna()
if mask.any():
inferred_dates = []
for nm in df.loc[mask, "name"]:
d = infer_date_from_filename(nm)
inferred_dates.append(d if d else pd.NaT)
df.loc[mask, "date"] = inferred_dates
df.sort_values(["date","name"], inplace=True, na_position="last")
return df
df_all = to_df(reports)
left, right = st.columns([3, 2], gap="large")
# ---------- LEFT: Global + 3D Agent output ----------
with left:
st.subheader("Global Overview")
if df_all["date"].notna().any():
unique_dates = sorted(set(pd.to_datetime(df_all["date"].dropna()).dt.date.tolist()))
if len(unique_dates) >= 2:
min_date, max_date = unique_dates[0], unique_dates[-1]
date_range = st.slider("Date range", min_value=min_date, max_value=max_date, value=(min_date, max_date))
df_filt = df_all[(df_all["date"] >= pd.to_datetime(date_range[0])) &
(df_all["date"] <= pd.to_datetime(date_range[1]))]
else:
st.info(f"Single date found: {unique_dates[0]}. Showing that day.")
df_filt = df_all.copy()
else:
st.warning("Dates not found in reports or filenames; showing all.")
df_filt = df_all.copy()
if not df_filt.empty and df_filt["date"].notna().any():
fig = px.histogram(df_filt, x="date", color="label", barmode="stack", title="Anomaly Distribution Over Time")
st.plotly_chart(fig, use_container_width=True)
else:
fig = px.histogram(df_filt, x="label", color="label", title="Anomaly Distribution (no dates)")
st.plotly_chart(fig, use_container_width=True)
st.dataframe(df_filt, use_container_width=True)
# 3D Agent panel (on the LEFT, as requested)
st.divider()
st.subheader("3D Trajectory (Agent)")
if st.session_state.traj_fig is not None:
st.caption(st.session_state.traj_summary or "")
st.plotly_chart(st.session_state.traj_fig, use_container_width=True)
else:
st.info("Upload a **Trajectory PDF** and a **Daily Report PDF** in the sidebar, then click **Run 3D Agent** to see the 3D view here.")
# ---------- RIGHT: KPIs + detail ----------
with right:
st.subheader("KPIs")
total_reports = df_all["name"].nunique()
total_anom = int(df_all["is_anomalous"].sum())
last_date = df_all["date"].dropna().max() if df_all["date"].notna().any() else None
k1, k2, k3 = st.columns(3)
k1.metric("Reports", total_reports)
k2.metric("Anomalies", total_anom)
k3.metric("Latest date", "-" if last_date is None or pd.isna(last_date) else str(last_date.date()))
names = sorted({r["name"] for r in reports})
sel = st.selectbox("Select report", names, index=max(0, len(names)-1))
rep = next(r for r in reports if r["name"] == sel)
cls = rep["classification"]
is_anom = cls.get("is_anomalous", False)
label_list = cls.get("labels", []) or []
labels_str = ", ".join(label_list) if label_list else "β€”"
if is_anom:
st.error(f"⚠️ Attention: anomaly detected β€” {labels_str}")
if GTTS_OK and st.button("πŸ”Š Speak alert"):
tts = gTTS(text=f"Attention. Anomaly detected. {labels_str.replace('_',' ')}.", lang='en')
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False); tts.save(tmp.name)
st.audio(tmp.name, format="audio/mp3")
else:
st.success("βœ… All clear: no anomaly detected.")
if GTTS_OK and st.button("πŸ”Š Speak summary"):
tts = gTTS(text="All clear. No anomaly detected. Operations normal.", lang='en')
tmp = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False); tts.save(tmp.name)
st.audio(tmp.name, format="audio/mp3")
c1, c2 = st.columns(2)
c1.metric("Anomalous?", "Yes" if is_anom else "No")
c2.metric("Label(s)", labels_str)
st.divider()
st.caption("Report detail")
ops_df = pd.DataFrame(rep["ops_df"])
mud_df = pd.DataFrame(rep["mud_df"])
rop_df = pd.DataFrame(rep["rop_df"])
if not ops_df.empty:
fig = px.line(ops_df, x="mid_time", y="depth_m", title="Depth vs Time (Operations)")
if is_anom: fig.update_traces(line=dict(color="#d62728"))
fig.update_yaxes(autorange="reversed", title="Depth (mMD)")
fig.update_xaxes(title="Time")
st.plotly_chart(fig, use_container_width=True)
if not mud_df.empty:
fig = px.line(mud_df, x="time", y="density_gcm3", markers=True, title="Mud Density vs Time (g/cmΒ³)")
if is_anom: fig.update_traces(line=dict(color="#d62728"), marker=dict(color="#d62728"))
st.plotly_chart(fig, use_container_width=True)
if not rop_df.empty and not pd.isna(rop_df.get("rop_m_per_hr", [np.nan])[0]):
rop = float(rop_df["rop_m_per_hr"].iloc[0])
fig = go.Figure(go.Indicator(mode="number+gauge", value=rop, number={'valueformat': '.2f'},
gauge={'shape': "bullet"}, title={'text': "ROP (m/hr) β€” last 24h"}))
fig.update_layout(height=140, margin=dict(l=30,r=30,t=30,b=10))
st.plotly_chart(fig, use_container_width=True)
spans = cls.get("spans", [])
if spans:
with st.expander("Evidence spans"):
for s in spans:
st.write(f"- **{s.get('label','')}**: {s.get('text','')}")
# =========================================================
# Chat + Voice
# =========================================================
st.divider()
st.subheader("Chat")
# Voice input row (placed near chat)
with st.expander("πŸŽ™οΈ Voice question"):
recorded = None
if HAS_REC:
st.caption("Click to start/stop recording, then press **Transcribe & Ask**.")
recorded = audio_recorder(pause_threshold=3.0)
voice_file = st.file_uploader("…or upload a short .wav/.mp3", type=["wav","mp3"], key="voice_up")
if st.button("Transcribe & Ask"):
audio_bytes = None
if recorded: audio_bytes = recorded
elif voice_file: audio_bytes = voice_file.getvalue()
if not audio_bytes:
st.warning("No audio captured or uploaded.")
else:
if api_key.strip():
try:
from openai import OpenAI
client = OpenAI(api_key=api_key)
# Save temp file for Whisper
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tmp.write(audio_bytes); tmp.flush()
with open(tmp.name, "rb") as fh:
tr = client.audio.transcriptions.create(model="whisper-1", file=fh)
voice_text = tr.text if hasattr(tr, "text") else str(tr)
st.write("You said:", voice_text)
st.session_state.chat.append({"role": "user", "content": voice_text})
except Exception as e:
st.error(f"Transcription failed: {e}")
else:
st.warning("Add your OpenAI API key in the sidebar to enable voice transcription.")
# Show chat history
for m in st.session_state.chat:
with st.chat_message(m["role"]):
st.markdown(m["content"])
chat_q = st.chat_input("Ask about anomalies, depths, mud density, etc.")
if chat_q:
st.session_state.chat.append({"role": "user", "content": chat_q})
# Simple data-aware reply using selected report
if len(st.session_state.chat) and st.session_state.chat[-1]["role"] == "user":
sel_name = 'sel' in locals() and sel or reports[-1]["name"]
rep = next(r for r in reports if r["name"] == sel_name)
ops_df = pd.DataFrame(rep["ops_df"]); mud_df = pd.DataFrame(rep["mud_df"])
cls = rep["classification"]; is_anom = cls.get("is_anomalous", False)
labels = ", ".join(cls.get("labels", [])) if cls.get("labels") else "β€”"
ans = f"Report **{sel_name}** β€” anomaly: {'Yes' if is_anom else 'No'}; labels: {labels}. "
if not ops_df.empty:
ans += f"Ops depth range: {int(ops_df['depth_m'].min())}-{int(ops_df['depth_m'].max())} mMD. "
if not mud_df.empty:
ans += f"Mud density range: {mud_df['density_gcm3'].min():.2f}-{mud_df['density_gcm3'].max():.2f} g/cmΒ³. "
st.session_state.chat.append({"role": "assistant", "content": ans})
with st.chat_message("assistant"):
st.markdown(ans)
st.caption("Dates parsed from report headers or inferred from filenames. 3D agent uses Survey + Daily Report from the sidebar.")