Spaces:
Running
Running
app19
Browse files
app.py
CHANGED
@@ -72,19 +72,19 @@ vectordb = Chroma.from_documents(
|
|
72 |
retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
|
73 |
|
74 |
class FinalAnswer(BaseModel):
|
75 |
-
|
76 |
answer: str = Field(description="the extracted answer")
|
77 |
|
78 |
# Assuming you have a parser for the FinalAnswer class
|
79 |
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
80 |
|
81 |
template = """
|
82 |
-
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer
|
83 |
-
Use the following pieces of context to answer the
|
84 |
-
Answer in the same language of the
|
85 |
Context: {context}
|
86 |
Chat history: {chat_history}
|
87 |
-
User: {
|
88 |
{format_instructions}
|
89 |
"""
|
90 |
|
@@ -94,7 +94,7 @@ qa_prompt = ChatPromptTemplate(
|
|
94 |
messages=[
|
95 |
sys_prompt,
|
96 |
MessagesPlaceholder(variable_name="chat_history"),
|
97 |
-
HumanMessagePromptTemplate.from_template("{
|
98 |
partial_variables={"format_instructions": parser.get_format_instructions()}
|
99 |
)
|
100 |
llm = HuggingFaceHub(
|
@@ -108,7 +108,7 @@ llm = HuggingFaceHub(
|
|
108 |
},
|
109 |
)
|
110 |
|
111 |
-
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='
|
112 |
|
113 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
114 |
llm = llm,
|
@@ -122,8 +122,8 @@ qa_chain = ConversationalRetrievalChain.from_llm(
|
|
122 |
output_key = 'output',
|
123 |
)
|
124 |
|
125 |
-
def chat_interface(
|
126 |
-
result = qa_chain.invoke({'
|
127 |
output_string = result['output']
|
128 |
|
129 |
# Find the index of the last occurrence of "answer": in the string
|
|
|
72 |
retriever = vectordb.as_retriever(search_kwargs={"k": 1}, search_type="mmr")
|
73 |
|
74 |
class FinalAnswer(BaseModel):
|
75 |
+
question: str = Field(description="the original question")
|
76 |
answer: str = Field(description="the extracted answer")
|
77 |
|
78 |
# Assuming you have a parser for the FinalAnswer class
|
79 |
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
80 |
|
81 |
template = """
|
82 |
+
Your name is AngryGreta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
83 |
+
Use the following pieces of context to answer the question /
|
84 |
+
Answer in the same language of the question /
|
85 |
Context: {context}
|
86 |
Chat history: {chat_history}
|
87 |
+
User: {question}
|
88 |
{format_instructions}
|
89 |
"""
|
90 |
|
|
|
94 |
messages=[
|
95 |
sys_prompt,
|
96 |
MessagesPlaceholder(variable_name="chat_history"),
|
97 |
+
HumanMessagePromptTemplate.from_template("{question}")],
|
98 |
partial_variables={"format_instructions": parser.get_format_instructions()}
|
99 |
)
|
100 |
llm = HuggingFaceHub(
|
|
|
108 |
},
|
109 |
)
|
110 |
|
111 |
+
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output', return_messages=True)
|
112 |
|
113 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
114 |
llm = llm,
|
|
|
122 |
output_key = 'output',
|
123 |
)
|
124 |
|
125 |
+
def chat_interface(question,history):
|
126 |
+
result = qa_chain.invoke({'question': question})
|
127 |
output_string = result['output']
|
128 |
|
129 |
# Find the index of the last occurrence of "answer": in the string
|