OSUM-EChat / wenet /dataset /dataset.py
xlgeng's picture
开始部署
841f290
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from typing import List
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
import wenet.dataset.process.processor as processor
from wenet.text.base_tokenizer import BaseTokenizer
from wenet.utils.file_utils import read_lists
class Processor(IterableDataset):
def __init__(self, source, f, *args, **kw):
assert callable(f)
self.source = source
self.f = f
self.args = args
self.kw = kw
def set_epoch(self, epoch):
self.source.set_epoch(epoch)
def __iter__(self):
""" Return an iterator over the source dataset processed by the
given processor.
"""
assert self.source is not None
assert callable(self.f)
return self.f(iter(self.source), *self.args, **self.kw)
def apply(self, f):
assert callable(f)
return Processor(self, f, *self.args, **self.kw)
class DistributedSampler:
def __init__(self, shuffle=True, partition=True, split_num=1,multi_num=1):
self.epoch = -1
self.update()
self.shuffle = shuffle
self.partition = partition
self.split_num = split_num
self.multi_num = multi_num
def update(self):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return dict(rank=self.rank,
world_size=self.world_size,
worker_id=self.worker_id,
num_workers=self.num_workers)
def set_epoch(self, epoch):
self.epoch = epoch
def split_data(self, total_num):
data = list(range(total_num))
sub_epoch = self.epoch + 1
full_epoch = sub_epoch // self.split_num
num_per_sub_epochs = total_num // self.split_num
random.Random(full_epoch).shuffle(data)
split_index = sub_epoch - full_epoch * self.split_num
begin = split_index * num_per_sub_epochs
end = (begin + num_per_sub_epochs
if (split_index + 1) < self.split_num else
total_num)
# print(f'begin: {begin}, end: {end}, world_size: {self.world_size}')
return data[begin:end]
def sample(self, data, split_num=1):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
if self.split_num == 1 and self.multi_num == 1:
data = list(range(len(data)))
elif self.split_num != 1:
assert self.multi_num == 1
data = self.split_data(len(data))
else:
assert self.split_num ==1
data = list(range(len(data*self.multi_num)))
# TODO(Binbin Zhang): fix this
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
data = data[self.rank::self.world_size]
# print(f'num dataset: {len(data)}')
data = data[self.worker_id::self.num_workers]
self.epoch += 1
return data
def pre_sample(self, data, split_num=1):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
if self.split_num == 1 and self.multi_num == 1:
data = list(range(len(data)))
elif self.split_num != 1:
assert self.multi_num == 1
data = self.split_data(len(data))
else:
assert self.split_num ==1
data = list(range(len(data*self.multi_num)))
# TODO(Binbin Zhang): fix this
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
data = data[self.rank::self.world_size]
# print(f'num dataset: {len(data)}')
data = data[self.worker_id::self.num_workers]
return data
class DataList(IterableDataset):
def __init__(self, lists, shuffle=True, partition=True, split_num=1):
self.lists = lists
self.sampler = DistributedSampler(shuffle, partition, split_num)
self.true_lists = self.sampler.pre_sample(self.lists)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def __iter__(self):
sampler_info = self.sampler.update()
indexes = self.sampler.sample(self.lists)
for index in indexes:
# yield dict(src=src)
data = dict(src=self.lists[index])
data.update(sampler_info)
yield data
from gxl_ai_utils.utils import utils_file
class BigDataList(IterableDataset):
def __init__(self,s2t_dataset,t2s_dataset,s2s_dataset,t2t_dataset, weight_num:List[int]):
self.s2t_dataset = s2t_dataset
self.t2s_dataset = t2s_dataset
self.s2s_dataset = s2s_dataset
self.t2t_dataset = t2t_dataset
self.batch_index = 0
self.weight_num = weight_num
utils_file.logging_info(f"weight_num:{weight_num}")
def set_epoch(self, epoch):
self.s2t_dataset.set_epoch(epoch)
self.t2s_dataset.set_epoch(epoch)
self.s2s_dataset.set_epoch(epoch)
self.t2t_dataset.set_epoch(epoch)
def __iter__(self):
datasets = [iter(d) for d in [self.s2t_dataset, self.t2s_dataset, self.s2s_dataset, self.t2t_dataset]]
while True:
self.batch_index += 1
selected_iter = self.do_select_iter(datasets)
try:
yield next(selected_iter)
except StopIteration:
# 移除已耗尽的数据源
datasets = [it for it in datasets if it is not selected_iter]
if not datasets: # 所有数据源耗尽时终止
break
def do_select_iter(self, datasets):
# 检查各迭代器是否有效(未耗尽)
valid_indices = [i for i, it in enumerate(datasets) if it is not None]
if not valid_indices:
raise StopIteration
# 保存当前随机状态
original_state = random.getstate()
# 临时设置随机种子为batch_index
random.seed(self.batch_index)
# 根据weight_num计算有效数据源的权重
valid_weights = [self.weight_num[i] for i in valid_indices]
# 按权重随机选择(使用random.choices)
selected_idx = random.choices(valid_indices, weights=valid_weights, k=1)[0]
# 恢复原始随机状态
random.setstate(original_state)
return datasets[selected_idx]
def get_dataset(data_type,
data_list_file,
tokenizer: BaseTokenizer,
conf,
partition=True):
lists = read_lists(data_list_file)
shuffle = conf.get('shuffle', True)
split_num = conf.get('split_num', 1)
multi_num = conf.get('multi_num', 1)
lists = lists * multi_num
if_data_recover = conf.get('data_recover', False)
data_recover_conf = conf.get('data_recover_conf', {})
if if_data_recover:
print(f"recover data old list len:{len(lists)}")
start_idx = data_recover_conf.get('start_idx', 0)
if start_idx >= len(lists):
start_idx = 0
lists = lists[start_idx:]
print(f"recover data from {start_idx}, new list len:{len(lists)}")
dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num)
true_list = dataset.true_lists
if data_type == 'shard':
dataset = Processor(dataset, processor.url_opener)
dataset = Processor(dataset, processor.tar_file_and_group_full_data, total_num=len(true_list))
else:
dataset = Processor(dataset, processor.parse_raw)
speaker_conf = conf.get('speaker_conf', None)
if speaker_conf is not None:
dataset = Processor(dataset, processor.parse_speaker, **speaker_conf)
if conf.get('eod_id', None) is not None:
tokenizer.eod_id = conf['eod_id']
# prompt dict
from gxl_ai_utils.utils import utils_file
other_tokenze_conf = conf.get('other_tokenze_conf', {})
global_prompt_dict = utils_file.load_dict_from_yaml(conf.get('prompt_conf_path', "conf/promp,t_config.yaml"))
speech_token_num = conf.get('speech_token_num', 1)
dataset = Processor(dataset, processor.tokenize, tokenizer, other_tokenze_conf=other_tokenze_conf,
global_prompt_dict=global_prompt_dict, speech_token_num=speech_token_num)
filter_conf = conf.get('filter_conf', {})
dataset = Processor(dataset, processor.filter, **filter_conf)
resample_conf = conf.get('resample_conf', {})
dataset = Processor(dataset, processor.resample, **resample_conf)
speed_perturb = conf.get('speed_perturb', False)
if speed_perturb:
dataset = Processor(dataset, processor.speed_perturb)
feats_type = conf.get('feats_type', 'fbank')
assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram']
if feats_type == 'fbank':
fbank_conf = conf.get('fbank_conf', {})
dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
elif feats_type == 'mfcc':
mfcc_conf = conf.get('mfcc_conf', {})
dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)
elif feats_type == 'log_mel_spectrogram':
log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {})
dataset = Processor(dataset, processor.compute_log_mel_spectrogram,
**log_mel_spectrogram_conf)
spec_aug = conf.get('spec_aug', True)
spec_sub = conf.get('spec_sub', False)
spec_trim = conf.get('spec_trim', False)
if spec_aug:
spec_aug_conf = conf.get('spec_aug_conf', {})
dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
if spec_sub:
spec_sub_conf = conf.get('spec_sub_conf', {})
dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
if spec_trim:
spec_trim_conf = conf.get('spec_trim_conf', {})
dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)
# for emotion-only task
# dataset = Processor(dataset, processor.add_ssl_vec)
if shuffle:
shuffle_conf = conf.get('shuffle_conf', {})
dataset = Processor(dataset, processor.shuffle, **shuffle_conf)
sort = conf.get('sort', True)
if sort:
sort_conf = conf.get('sort_conf', {})
dataset = Processor(dataset, processor.sort, **sort_conf)
batch_conf = conf.get('batch_conf', {})
dataset = Processor(dataset, processor.batch, **batch_conf)
dataset = Processor(dataset, processor.padding)
return dataset
def do_get_fake_file():
temp_path = f'~/.cache/.temp/{random.randint(10000, 99999)}.txt'
utils_file.makedir_for_file(temp_path)
return temp_path
def BigDataset(data_type,
data_list_file_s2t,
data_list_file_t2s,
data_list_file_s2s,
data_list_file_t2t,
tokenizer: BaseTokenizer,
conf,
partition=True):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shard tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
bpe_model(str): model for english bpe part
partition(bool): whether to do data partition in terms of rank
"""
assert data_type in ['raw', 'shard']
# 深度复制conf
s2t_conf = copy.deepcopy(conf)
s2t_conf['other_tokenze_conf']["use_s2s_convert_s2t"]['enable'] = True
s2t_conf['filter_conf']['other_filter_conf']['only_s2t'] = True
s2t_conf['other_tokenze_conf']["only_info"]["only_s2t"] = True
t2s_conf = copy.deepcopy(conf)
t2s_conf['filter_conf']['other_filter_conf']['only_t2s'] = True
t2s_conf['other_tokenze_conf']["only_info"]['only_t2s'] = True
s2s_conf = copy.deepcopy(conf)
s2s_conf['filter_conf']['other_filter_conf']['only_s2s'] = True
s2s_conf['other_tokenze_conf']["only_info"]['only_s2s'] = True
t2t_conf = copy.deepcopy(conf)
t2t_conf['filter_conf']['other_filter_conf']['only_t2t'] = True
t2t_conf['other_tokenze_conf']["only_info"]['only_t2t'] = True
tmp_file_s2t = do_get_fake_file()
s2s_list = utils_file.load_list_file_clean(data_list_file_s2s)
# s2s_list_little = s2s_list[::3]
s2s_list_little = []
s2t_list = utils_file.load_list_file_clean(data_list_file_s2t)
s2t_full_list = s2t_list + s2s_list_little
utils_file.write_list_to_file(s2t_full_list, tmp_file_s2t)
s2t_dataset = get_dataset(data_type, tmp_file_s2t, tokenizer, s2t_conf, partition=partition)
t2s_dataset = get_dataset(data_type, data_list_file_t2s, tokenizer, t2s_conf, partition=partition)
s2s_dataset = get_dataset(data_type, data_list_file_s2s, tokenizer, s2s_conf, partition=partition)
t2t_dataset = get_dataset(data_type, data_list_file_t2t, tokenizer, t2t_conf, partition=partition)
dataset = BigDataList(s2t_dataset, t2s_dataset, s2s_dataset, t2t_dataset,
weight_num=[len(read_lists(tmp_file_s2t)),
len(read_lists(data_list_file_t2s)),
len(read_lists(data_list_file_s2s)),
len(read_lists(data_list_file_t2t))
])
return dataset
def Dataset(data_type,
data_list_file,
tokenizer: BaseTokenizer,
conf,
partition=True):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shard tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
bpe_model(str): model for english bpe part
partition(bool): whether to do data partition in terms of rank
"""
assert data_type in ['raw', 'shard', 'shard_full_data']
dataset = get_dataset(data_type, data_list_file, tokenizer, conf, partition=partition)
return dataset