Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import random | |
from typing import List | |
import torch | |
import torch.distributed as dist | |
from torch.utils.data import IterableDataset | |
import wenet.dataset.process.processor as processor | |
from wenet.text.base_tokenizer import BaseTokenizer | |
from wenet.utils.file_utils import read_lists | |
class Processor(IterableDataset): | |
def __init__(self, source, f, *args, **kw): | |
assert callable(f) | |
self.source = source | |
self.f = f | |
self.args = args | |
self.kw = kw | |
def set_epoch(self, epoch): | |
self.source.set_epoch(epoch) | |
def __iter__(self): | |
""" Return an iterator over the source dataset processed by the | |
given processor. | |
""" | |
assert self.source is not None | |
assert callable(self.f) | |
return self.f(iter(self.source), *self.args, **self.kw) | |
def apply(self, f): | |
assert callable(f) | |
return Processor(self, f, *self.args, **self.kw) | |
class DistributedSampler: | |
def __init__(self, shuffle=True, partition=True, split_num=1,multi_num=1): | |
self.epoch = -1 | |
self.update() | |
self.shuffle = shuffle | |
self.partition = partition | |
self.split_num = split_num | |
self.multi_num = multi_num | |
def update(self): | |
assert dist.is_available() | |
if dist.is_initialized(): | |
self.rank = dist.get_rank() | |
self.world_size = dist.get_world_size() | |
else: | |
self.rank = 0 | |
self.world_size = 1 | |
worker_info = torch.utils.data.get_worker_info() | |
if worker_info is None: | |
self.worker_id = 0 | |
self.num_workers = 1 | |
else: | |
self.worker_id = worker_info.id | |
self.num_workers = worker_info.num_workers | |
return dict(rank=self.rank, | |
world_size=self.world_size, | |
worker_id=self.worker_id, | |
num_workers=self.num_workers) | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |
def split_data(self, total_num): | |
data = list(range(total_num)) | |
sub_epoch = self.epoch + 1 | |
full_epoch = sub_epoch // self.split_num | |
num_per_sub_epochs = total_num // self.split_num | |
random.Random(full_epoch).shuffle(data) | |
split_index = sub_epoch - full_epoch * self.split_num | |
begin = split_index * num_per_sub_epochs | |
end = (begin + num_per_sub_epochs | |
if (split_index + 1) < self.split_num else | |
total_num) | |
# print(f'begin: {begin}, end: {end}, world_size: {self.world_size}') | |
return data[begin:end] | |
def sample(self, data, split_num=1): | |
""" Sample data according to rank/world_size/num_workers | |
Args: | |
data(List): input data list | |
Returns: | |
List: data list after sample | |
""" | |
if self.split_num == 1 and self.multi_num == 1: | |
data = list(range(len(data))) | |
elif self.split_num != 1: | |
assert self.multi_num == 1 | |
data = self.split_data(len(data)) | |
else: | |
assert self.split_num ==1 | |
data = list(range(len(data*self.multi_num))) | |
# TODO(Binbin Zhang): fix this | |
# We can not handle uneven data for CV on DDP, so we don't | |
# sample data by rank, that means every GPU gets the same | |
# and all the CV data | |
if self.partition: | |
if self.shuffle: | |
random.Random(self.epoch).shuffle(data) | |
data = data[self.rank::self.world_size] | |
# print(f'num dataset: {len(data)}') | |
data = data[self.worker_id::self.num_workers] | |
self.epoch += 1 | |
return data | |
def pre_sample(self, data, split_num=1): | |
""" Sample data according to rank/world_size/num_workers | |
Args: | |
data(List): input data list | |
Returns: | |
List: data list after sample | |
""" | |
if self.split_num == 1 and self.multi_num == 1: | |
data = list(range(len(data))) | |
elif self.split_num != 1: | |
assert self.multi_num == 1 | |
data = self.split_data(len(data)) | |
else: | |
assert self.split_num ==1 | |
data = list(range(len(data*self.multi_num))) | |
# TODO(Binbin Zhang): fix this | |
# We can not handle uneven data for CV on DDP, so we don't | |
# sample data by rank, that means every GPU gets the same | |
# and all the CV data | |
if self.partition: | |
if self.shuffle: | |
random.Random(self.epoch).shuffle(data) | |
data = data[self.rank::self.world_size] | |
# print(f'num dataset: {len(data)}') | |
data = data[self.worker_id::self.num_workers] | |
return data | |
class DataList(IterableDataset): | |
def __init__(self, lists, shuffle=True, partition=True, split_num=1): | |
self.lists = lists | |
self.sampler = DistributedSampler(shuffle, partition, split_num) | |
self.true_lists = self.sampler.pre_sample(self.lists) | |
def set_epoch(self, epoch): | |
self.sampler.set_epoch(epoch) | |
def __iter__(self): | |
sampler_info = self.sampler.update() | |
indexes = self.sampler.sample(self.lists) | |
for index in indexes: | |
# yield dict(src=src) | |
data = dict(src=self.lists[index]) | |
data.update(sampler_info) | |
yield data | |
from gxl_ai_utils.utils import utils_file | |
class BigDataList(IterableDataset): | |
def __init__(self,s2t_dataset,t2s_dataset,s2s_dataset,t2t_dataset, weight_num:List[int]): | |
self.s2t_dataset = s2t_dataset | |
self.t2s_dataset = t2s_dataset | |
self.s2s_dataset = s2s_dataset | |
self.t2t_dataset = t2t_dataset | |
self.batch_index = 0 | |
self.weight_num = weight_num | |
utils_file.logging_info(f"weight_num:{weight_num}") | |
def set_epoch(self, epoch): | |
self.s2t_dataset.set_epoch(epoch) | |
self.t2s_dataset.set_epoch(epoch) | |
self.s2s_dataset.set_epoch(epoch) | |
self.t2t_dataset.set_epoch(epoch) | |
def __iter__(self): | |
datasets = [iter(d) for d in [self.s2t_dataset, self.t2s_dataset, self.s2s_dataset, self.t2t_dataset]] | |
while True: | |
self.batch_index += 1 | |
selected_iter = self.do_select_iter(datasets) | |
try: | |
yield next(selected_iter) | |
except StopIteration: | |
# 移除已耗尽的数据源 | |
datasets = [it for it in datasets if it is not selected_iter] | |
if not datasets: # 所有数据源耗尽时终止 | |
break | |
def do_select_iter(self, datasets): | |
# 检查各迭代器是否有效(未耗尽) | |
valid_indices = [i for i, it in enumerate(datasets) if it is not None] | |
if not valid_indices: | |
raise StopIteration | |
# 保存当前随机状态 | |
original_state = random.getstate() | |
# 临时设置随机种子为batch_index | |
random.seed(self.batch_index) | |
# 根据weight_num计算有效数据源的权重 | |
valid_weights = [self.weight_num[i] for i in valid_indices] | |
# 按权重随机选择(使用random.choices) | |
selected_idx = random.choices(valid_indices, weights=valid_weights, k=1)[0] | |
# 恢复原始随机状态 | |
random.setstate(original_state) | |
return datasets[selected_idx] | |
def get_dataset(data_type, | |
data_list_file, | |
tokenizer: BaseTokenizer, | |
conf, | |
partition=True): | |
lists = read_lists(data_list_file) | |
shuffle = conf.get('shuffle', True) | |
split_num = conf.get('split_num', 1) | |
multi_num = conf.get('multi_num', 1) | |
lists = lists * multi_num | |
if_data_recover = conf.get('data_recover', False) | |
data_recover_conf = conf.get('data_recover_conf', {}) | |
if if_data_recover: | |
print(f"recover data old list len:{len(lists)}") | |
start_idx = data_recover_conf.get('start_idx', 0) | |
if start_idx >= len(lists): | |
start_idx = 0 | |
lists = lists[start_idx:] | |
print(f"recover data from {start_idx}, new list len:{len(lists)}") | |
dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num) | |
true_list = dataset.true_lists | |
if data_type == 'shard': | |
dataset = Processor(dataset, processor.url_opener) | |
dataset = Processor(dataset, processor.tar_file_and_group_full_data, total_num=len(true_list)) | |
else: | |
dataset = Processor(dataset, processor.parse_raw) | |
speaker_conf = conf.get('speaker_conf', None) | |
if speaker_conf is not None: | |
dataset = Processor(dataset, processor.parse_speaker, **speaker_conf) | |
if conf.get('eod_id', None) is not None: | |
tokenizer.eod_id = conf['eod_id'] | |
# prompt dict | |
from gxl_ai_utils.utils import utils_file | |
other_tokenze_conf = conf.get('other_tokenze_conf', {}) | |
global_prompt_dict = utils_file.load_dict_from_yaml(conf.get('prompt_conf_path', "conf/promp,t_config.yaml")) | |
speech_token_num = conf.get('speech_token_num', 1) | |
dataset = Processor(dataset, processor.tokenize, tokenizer, other_tokenze_conf=other_tokenze_conf, | |
global_prompt_dict=global_prompt_dict, speech_token_num=speech_token_num) | |
filter_conf = conf.get('filter_conf', {}) | |
dataset = Processor(dataset, processor.filter, **filter_conf) | |
resample_conf = conf.get('resample_conf', {}) | |
dataset = Processor(dataset, processor.resample, **resample_conf) | |
speed_perturb = conf.get('speed_perturb', False) | |
if speed_perturb: | |
dataset = Processor(dataset, processor.speed_perturb) | |
feats_type = conf.get('feats_type', 'fbank') | |
assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram'] | |
if feats_type == 'fbank': | |
fbank_conf = conf.get('fbank_conf', {}) | |
dataset = Processor(dataset, processor.compute_fbank, **fbank_conf) | |
elif feats_type == 'mfcc': | |
mfcc_conf = conf.get('mfcc_conf', {}) | |
dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf) | |
elif feats_type == 'log_mel_spectrogram': | |
log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {}) | |
dataset = Processor(dataset, processor.compute_log_mel_spectrogram, | |
**log_mel_spectrogram_conf) | |
spec_aug = conf.get('spec_aug', True) | |
spec_sub = conf.get('spec_sub', False) | |
spec_trim = conf.get('spec_trim', False) | |
if spec_aug: | |
spec_aug_conf = conf.get('spec_aug_conf', {}) | |
dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf) | |
if spec_sub: | |
spec_sub_conf = conf.get('spec_sub_conf', {}) | |
dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf) | |
if spec_trim: | |
spec_trim_conf = conf.get('spec_trim_conf', {}) | |
dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf) | |
# for emotion-only task | |
# dataset = Processor(dataset, processor.add_ssl_vec) | |
if shuffle: | |
shuffle_conf = conf.get('shuffle_conf', {}) | |
dataset = Processor(dataset, processor.shuffle, **shuffle_conf) | |
sort = conf.get('sort', True) | |
if sort: | |
sort_conf = conf.get('sort_conf', {}) | |
dataset = Processor(dataset, processor.sort, **sort_conf) | |
batch_conf = conf.get('batch_conf', {}) | |
dataset = Processor(dataset, processor.batch, **batch_conf) | |
dataset = Processor(dataset, processor.padding) | |
return dataset | |
def do_get_fake_file(): | |
temp_path = f'~/.cache/.temp/{random.randint(10000, 99999)}.txt' | |
utils_file.makedir_for_file(temp_path) | |
return temp_path | |
def BigDataset(data_type, | |
data_list_file_s2t, | |
data_list_file_t2s, | |
data_list_file_s2s, | |
data_list_file_t2t, | |
tokenizer: BaseTokenizer, | |
conf, | |
partition=True): | |
""" Construct dataset from arguments | |
We have two shuffle stage in the Dataset. The first is global | |
shuffle at shard tar/raw file level. The second is global shuffle | |
at training samples level. | |
Args: | |
data_type(str): raw/shard | |
bpe_model(str): model for english bpe part | |
partition(bool): whether to do data partition in terms of rank | |
""" | |
assert data_type in ['raw', 'shard'] | |
# 深度复制conf | |
s2t_conf = copy.deepcopy(conf) | |
s2t_conf['other_tokenze_conf']["use_s2s_convert_s2t"]['enable'] = True | |
s2t_conf['filter_conf']['other_filter_conf']['only_s2t'] = True | |
s2t_conf['other_tokenze_conf']["only_info"]["only_s2t"] = True | |
t2s_conf = copy.deepcopy(conf) | |
t2s_conf['filter_conf']['other_filter_conf']['only_t2s'] = True | |
t2s_conf['other_tokenze_conf']["only_info"]['only_t2s'] = True | |
s2s_conf = copy.deepcopy(conf) | |
s2s_conf['filter_conf']['other_filter_conf']['only_s2s'] = True | |
s2s_conf['other_tokenze_conf']["only_info"]['only_s2s'] = True | |
t2t_conf = copy.deepcopy(conf) | |
t2t_conf['filter_conf']['other_filter_conf']['only_t2t'] = True | |
t2t_conf['other_tokenze_conf']["only_info"]['only_t2t'] = True | |
tmp_file_s2t = do_get_fake_file() | |
s2s_list = utils_file.load_list_file_clean(data_list_file_s2s) | |
# s2s_list_little = s2s_list[::3] | |
s2s_list_little = [] | |
s2t_list = utils_file.load_list_file_clean(data_list_file_s2t) | |
s2t_full_list = s2t_list + s2s_list_little | |
utils_file.write_list_to_file(s2t_full_list, tmp_file_s2t) | |
s2t_dataset = get_dataset(data_type, tmp_file_s2t, tokenizer, s2t_conf, partition=partition) | |
t2s_dataset = get_dataset(data_type, data_list_file_t2s, tokenizer, t2s_conf, partition=partition) | |
s2s_dataset = get_dataset(data_type, data_list_file_s2s, tokenizer, s2s_conf, partition=partition) | |
t2t_dataset = get_dataset(data_type, data_list_file_t2t, tokenizer, t2t_conf, partition=partition) | |
dataset = BigDataList(s2t_dataset, t2s_dataset, s2s_dataset, t2t_dataset, | |
weight_num=[len(read_lists(tmp_file_s2t)), | |
len(read_lists(data_list_file_t2s)), | |
len(read_lists(data_list_file_s2s)), | |
len(read_lists(data_list_file_t2t)) | |
]) | |
return dataset | |
def Dataset(data_type, | |
data_list_file, | |
tokenizer: BaseTokenizer, | |
conf, | |
partition=True): | |
""" Construct dataset from arguments | |
We have two shuffle stage in the Dataset. The first is global | |
shuffle at shard tar/raw file level. The second is global shuffle | |
at training samples level. | |
Args: | |
data_type(str): raw/shard | |
bpe_model(str): model for english bpe part | |
partition(bool): whether to do data partition in terms of rank | |
""" | |
assert data_type in ['raw', 'shard', 'shard_full_data'] | |
dataset = get_dataset(data_type, data_list_file, tokenizer, conf, partition=partition) | |
return dataset | |