Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from typing import Tuple | |
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau): | |
loss = 0 | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
m_DG = torch.median((dr - dg)) | |
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG]) | |
loss += tau - F.relu(tau - L_rel) | |
return loss | |
def mel_loss(real_speech, generated_speech, mel_transforms): | |
loss = 0 | |
for transform in mel_transforms: | |
mel_r = transform(real_speech) | |
mel_g = transform(generated_speech) | |
loss += F.l1_loss(mel_g, mel_r) | |
return loss | |
class DPOLoss(torch.nn.Module): | |
""" | |
DPO Loss | |
""" | |
def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None: | |
super().__init__() | |
self.beta = beta | |
self.label_smoothing = label_smoothing | |
self.ipo = ipo | |
def forward( | |
self, | |
policy_chosen_logps: torch.Tensor, | |
policy_rejected_logps: torch.Tensor, | |
reference_chosen_logps: torch.Tensor, | |
reference_rejected_logps: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
pi_logratios = policy_chosen_logps - policy_rejected_logps | |
ref_logratios = reference_chosen_logps - reference_rejected_logps | |
logits = pi_logratios - ref_logratios | |
if self.ipo: | |
losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf | |
else: | |
# Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf) | |
losses = ( | |
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing) | |
- F.logsigmoid(-self.beta * logits) * self.label_smoothing | |
) | |
loss = losses.mean() | |
chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach() | |
rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach() | |
return loss, chosen_rewards, rejected_rewards | |