Add-Vishnu's picture
Changed the model path
f62d856
import gradio as gr
import spacy
import medspacy
from medspacy.visualization import visualize_dep, visualize_ent
from spacy import displacy
med_ner = medspacy.load(r"./model-best")
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
# last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
def ner(inp):
output = med_ner(inp)
formatted_ents = []
for i in output.ents:
ent = {}
ent['entity']= i.label_
ent['word']= i.text
ent['start']= int(i.start_char)
ent['end']= int(i.end_char)
print(i.label_,"->",i.text,"->",i.start_char,"->",i.end_char,"->",type(i.start_char))
formatted_ents.append(ent)
print(formatted_ents)
merged_tokens = merge_tokens(formatted_ents)
# return {"text": str(inp), "entities": formatted_ents}
return {"text": str(inp), "entities": merged_tokens}
demo = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
outputs=[gr.HighlightedText(label="Text with entites")],
title="Custom-NER with Spacy3 and MedSpacy with v2 model",
description="Find medical entities using the NER model under the hood!",
allow_flagging = True,
examples=["Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.", "I have fever and cough since 2 days."]
)
demo.launch()