Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spacy | |
import medspacy | |
from medspacy.visualization import visualize_dep, visualize_ent | |
from spacy import displacy | |
med_ner = medspacy.load(r"./model-best") | |
def merge_tokens(tokens): | |
merged_tokens = [] | |
for token in tokens: | |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): | |
# If current token continues the entity of the last one, merge them | |
last_token = merged_tokens[-1] | |
last_token['word'] += token['word'].replace('##', '') | |
last_token['end'] = token['end'] | |
# last_token['score'] = (last_token['score'] + token['score']) / 2 | |
else: | |
# Otherwise, add the token to the list | |
merged_tokens.append(token) | |
return merged_tokens | |
def ner(inp): | |
output = med_ner(inp) | |
formatted_ents = [] | |
for i in output.ents: | |
ent = {} | |
ent['entity']= i.label_ | |
ent['word']= i.text | |
ent['start']= int(i.start_char) | |
ent['end']= int(i.end_char) | |
print(i.label_,"->",i.text,"->",i.start_char,"->",i.end_char,"->",type(i.start_char)) | |
formatted_ents.append(ent) | |
print(formatted_ents) | |
merged_tokens = merge_tokens(formatted_ents) | |
# return {"text": str(inp), "entities": formatted_ents} | |
return {"text": str(inp), "entities": merged_tokens} | |
demo = gr.Interface(fn=ner, | |
inputs=[gr.Textbox(label="Text to find entities", lines=2)], | |
outputs=[gr.HighlightedText(label="Text with entites")], | |
title="Custom-NER with Spacy3 and MedSpacy with v2 model", | |
description="Find medical entities using the NER model under the hood!", | |
allow_flagging = True, | |
examples=["Patient has hx of stroke. Mother diagnosed with diabetes. No evidence of pna.", "I have fever and cough since 2 days."] | |
) | |
demo.launch() |