MedCodeMCP / docs /plans /mvp_checklist.md
gpaasch's picture
mvp checklist
1bd8cdf

A newer version of the Gradio SDK is available: 5.33.1

Upgrade
  • Initialize new Hugging Face Space with Gradio SDK 5.x

    • Add mcp-server-track tag in README.md
  • Write Python function symptom_to_diagnosis(symptom_text)

    • Use OpenAI or Anthropic API to generate JSON
    • Format prompt to request JSON output
    • Parse model response into Python dict
    • Handle JSON formatting quirks (trim extra text, use json.loads)
    • Implement fallback rule-based mapping for demo cases
  • Test symptom_to_diagnosis function

    • Input common symptom examples and combinations
    • Verify relevance and correctness of ICD codes and diagnoses
    • Tweak prompt to improve specificity and JSON validity
  • Define confidence score methodology

    • Decide whether to use model’s self-reported scores or rank order as proxy
    • Document how confidence is calculated and interpreted
  • Integrate function into Gradio Blocks interface

    • Use gr.Interface or gr.ChatInterface to accept symptom text input and display JSON output
    • Configure Gradio app metadata to expose MCP endpoint
  • Build demonstration client or script (optional)

    • Create minimal client using gradio.Client or requests to call Space’s prediction API
    • Alternatively, build a second Gradio Space as a simple chatbot that calls the MCP tool
    • Prepare screen recording showing AI agent (e.g., Claude Desktop) calling the MCP endpoint with example query
  • Update README.md documentation

    • Describe tool functionality and usage examples
    • Include mcp-server-track tag, link to video or client demo
    • List technologies used (e.g., “OpenAI GPT-4 API for symptom→ICD mapping”)
  • Configure OpenAI/Anthropic API usage

    • Use cheaper models (e.g., GPT-3.5) during development
    • Reserve GPT-4 or Claude-2 for final demo queries to conserve credits
  • Evaluate Hugging Face / Mistral credits for alternative inference

    • Identify open ICD-10 prediction models on HF Inference API (e.g., AkshatSurolia/ICD-10-Code-Prediction)
    • Consider running open-source models on Mistral if time allows
  • Plan Modal Labs usage for cloud compute (optional)

    • Pre-compute ICD-10 embeddings in Modal job if semantic search is added
    • Host backend microservice or Gradio app on Modal if HF Space resources are insufficient
  • Reserve Nebius or Hyperbolic Labs credits for GPU-intensive tasks (if needed)

    • Spin up GPU instance to host or fine-tune open-source model only if HF Space times out
  • Consider LlamaIndex integration for retrieval-augmented generation (bonus)

    • Load ICD-10 dataset into LlamaIndex and test semantic search for candidate codes
    • Implement minimal index of common diagnoses for demo if time permits
  • Record and document final demo

    • Capture symptom input, MCP tool invocation, and JSON output in a short video
    • Host video link in README.md