TDAgent / tdagent /grchat.py
Josep Pon Farreny
feat: Add microsoft phi model
c86beb0
raw
history blame
16.4 kB
from __future__ import annotations
from collections import OrderedDict
from collections.abc import Mapping, Sequence
from types import MappingProxyType
from typing import TYPE_CHECKING, Any
import boto3
import botocore
import botocore.exceptions
import gradio as gr
import gradio.themes as gr_themes
from langchain_aws import ChatBedrock
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_mcp_adapters.client import MultiServerMCPClient
from langgraph.prebuilt import create_react_agent
from openai import OpenAI
from openai.types.chat import ChatCompletion
from tdagent.grcomponents import MutableCheckBoxGroup, MutableCheckBoxGroupEntry
if TYPE_CHECKING:
from langgraph.graph.graph import CompiledGraph
#### Constants ####
SYSTEM_MESSAGE = SystemMessage(
"""
You are a security analyst assistant responsible for collecting, analyzing
and disseminating actionable intelligence related to cyber threats,
vulnerabilities and threat actors.
When presented with potential incidents information or tickets, you should
evaluate the presented evidence, decide what is missing and gather
additional data using any tool at your disposal. After gathering more
information you must evaluate if the incident is a threat or
not and, if possible, remediation actions.
You must always present the conducted analysis and final conclusion.
Never use external means of communication, like emails or SMS, unless
instructed to do so.
""".strip(),
)
GRADIO_ROLE_TO_LG_MESSAGE_TYPE = MappingProxyType(
{
"user": HumanMessage,
"assistant": AIMessage,
},
)
MODEL_OPTIONS = OrderedDict( # Initialize with tuples to preserve options order
(
(
"HuggingFace",
{
"Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
"Llama 3.1 8B Instruct": "meta-llama/Llama-3.1-8B-Instruct",
# "Qwen3 235B A22B": "Qwen/Qwen3-235B-A22B", # Slow inference
"Microsoft Phi-3.5-mini Instruct": "microsoft/Phi-3.5-mini-instruct",
# "Deepseek R1 distill-llama 70B": "deepseek-ai/DeepSeek-R1-Distill-Llama-70B", # noqa: E501
# "Deepseek V3": "deepseek-ai/DeepSeek-V3",
},
),
(
"AWS Bedrock",
{
"Anthropic Claude 3.5 Sonnet (EU)": (
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0"
),
# "Anthropic Claude 3.7 Sonnet": (
# "anthropic.claude-3-7-sonnet-20250219-v1:0"
# ),
},
),
),
)
#### Shared variables ####
llm_agent: CompiledGraph | None = None
#### Utility functions ####
## Bedrock LLM creation ##
def create_bedrock_llm(
bedrock_model_id: str,
aws_access_key: str,
aws_secret_key: str,
aws_session_token: str,
aws_region: str,
temperature: float = 0.8,
max_tokens: int = 512,
) -> tuple[ChatBedrock | None, str]:
"""Create a LangGraph Bedrock agent."""
boto3_config = {
"aws_access_key_id": aws_access_key,
"aws_secret_access_key": aws_secret_key,
"aws_session_token": aws_session_token if aws_session_token else None,
"region_name": aws_region,
}
# Verify credentials
try:
sts = boto3.client("sts", **boto3_config)
sts.get_caller_identity()
except botocore.exceptions.ClientError as err:
return None, str(err)
try:
bedrock_client = boto3.client("bedrock-runtime", **boto3_config)
llm = ChatBedrock(
model_id=bedrock_model_id,
client=bedrock_client,
model_kwargs={"temperature": temperature, "max_tokens": max_tokens},
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
## Hugging Face LLM creation ##
def create_hf_llm(
hf_model_id: str,
huggingfacehub_api_token: str | None = None,
) -> tuple[ChatHuggingFace | None, str]:
"""Create a LangGraph Hugging Face agent."""
try:
llm = HuggingFaceEndpoint(
model=hf_model_id,
temperature=0.8,
task="text-generation",
huggingfacehub_api_token=huggingfacehub_api_token,
)
chat_llm = ChatHuggingFace(llm=llm)
except Exception as e: # noqa: BLE001
return None, str(e)
return chat_llm, ""
## OpenAI LLM creation ##
def create_openai_llm(
model_id: str,
token_id: str,
) -> tuple[ChatCompletion | None, str]:
"""Create a LangGraph OpenAI agent."""
try:
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=token_id,
)
llm = client.chat.completions.create(
messages=[], # needs to be fixed
model=model_id,
max_tokens=512,
temperature=0.8,
)
except Exception as e: # noqa: BLE001
return None, str(e)
return llm, ""
#### UI functionality ####
async def gr_connect_to_bedrock( # noqa: PLR0913
model_id: str,
access_key: str,
secret_key: str,
session_token: str,
region: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
temperature: float = 0.8,
max_tokens: int = 512,
) -> str:
"""Initialize Bedrock agent."""
global llm_agent # noqa: PLW0603
if not access_key or not secret_key:
return "❌ Please provide both Access Key ID and Secret Access Key"
llm, error = create_bedrock_llm(
model_id,
access_key.strip(),
secret_key.strip(),
session_token.strip(),
region,
temperature=temperature,
max_tokens=max_tokens,
)
if llm is None:
return f"❌ Connection failed: {error}"
# client = MultiServerMCPClient(
# {
# "toolkit": {
# "url": "https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
# "transport": "sse",
# },
# }
# )
# tools = await client.get_tools()
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
else:
tools = []
llm_agent = create_react_agent(
model=llm,
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "βœ… Successfully connected to AWS Bedrock!"
async def gr_connect_to_hf(
model_id: str,
hf_access_token_textbox: str | None,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
llm, error = create_hf_llm(model_id, hf_access_token_textbox)
if llm is None:
return f"❌ Connection failed: {error}"
tools = []
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
llm_agent = create_react_agent(
model=llm,
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "βœ… Successfully connected to Hugging Face!"
async def gr_connect_to_nebius(
model_id: str,
nebius_access_token_textbox: str,
mcp_servers: Sequence[MutableCheckBoxGroupEntry] | None,
) -> str:
"""Initialize Hugging Face agent."""
global llm_agent # noqa: PLW0603
llm, error = create_openai_llm(model_id, nebius_access_token_textbox)
if llm is None:
return f"❌ Connection failed: {error}"
tools = []
if mcp_servers:
client = MultiServerMCPClient(
{
server.name.replace(" ", "-"): {
"url": server.value,
"transport": "sse",
}
for server in mcp_servers
},
)
tools = await client.get_tools()
llm_agent = create_react_agent(
model=str(llm),
tools=tools,
prompt=SYSTEM_MESSAGE,
)
return "βœ… Successfully connected to nebius!"
async def gr_chat_function( # noqa: D103
message: str,
history: list[Mapping[str, str]],
) -> str:
if llm_agent is None:
return "Please configure your credentials first."
messages = []
for hist_msg in history:
role = hist_msg["role"]
message_type = GRADIO_ROLE_TO_LG_MESSAGE_TYPE[role]
messages.append(message_type(content=hist_msg["content"]))
messages.append(HumanMessage(content=message))
try:
llm_response = await llm_agent.ainvoke(
{
"messages": messages,
},
)
return llm_response["messages"][-1].content
except Exception as err:
raise gr.Error(
f"We encountered an error while invoking the model:\n{err}",
print_exception=True,
) from err
## UI components ##
# Function to toggle visibility and set model IDs
def toggle_model_fields(
provider: str,
) -> tuple[
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
dict[str, Any],
]: # ignore: F821
"""Toggle visibility of model fields based on the selected provider."""
# Update model choices based on the selected provider
if provider in MODEL_OPTIONS:
model_choices = list(MODEL_OPTIONS[provider].keys())
model_pretty = gr.update(
choices=model_choices,
value=model_choices[0],
visible=True,
interactive=True,
)
else:
model_pretty = gr.update(choices=[], visible=False)
# Visibility settings for fields specific to each provider
is_aws = provider == "AWS Bedrock"
is_hf = provider == "HuggingFace"
return (
model_pretty,
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_aws, interactive=is_aws),
gr.update(visible=is_hf, interactive=is_hf),
)
async def update_connection_status( # noqa: PLR0913
provider: str,
pretty_model: str,
mcp_list_state: Sequence[MutableCheckBoxGroupEntry] | None,
aws_access_key_textbox: str,
aws_secret_key_textbox: str,
aws_session_token_textbox: str,
aws_region_dropdown: str,
hf_token: str,
temperature: float,
max_tokens: int,
) -> str:
"""Update the connection status based on the selected provider and model."""
if not provider or not pretty_model:
return "❌ Please select a provider and model."
model_id = MODEL_OPTIONS.get(provider, {}).get(pretty_model)
connection = "❌ Invalid provider"
if model_id:
if provider == "AWS Bedrock":
connection = await gr_connect_to_bedrock(
model_id,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
mcp_list_state,
temperature,
max_tokens,
)
elif provider == "HuggingFace":
connection = await gr_connect_to_hf(model_id, hf_token, mcp_list_state)
elif provider == "Nebius":
connection = await gr_connect_to_nebius(model_id, hf_token, mcp_list_state)
return connection
with (
gr.Blocks(
theme=gr_themes.Origin(
primary_hue="teal",
spacing_size="sm",
font="sans-serif",
),
title="TDAgent",
) as gr_app,
gr.Row(),
):
with gr.Column(scale=1):
with gr.Accordion("πŸ”Œ MCP Servers", open=False):
mcp_list = MutableCheckBoxGroup(
values=[
MutableCheckBoxGroupEntry(
name="TDAgent tools",
value="https://agents-mcp-hackathon-tdagenttools.hf.space/gradio_api/mcp/sse",
),
],
label="MCP Servers",
new_value_label="MCP endpoint",
new_name_label="MCP endpoint name",
new_value_placeholder="https://my-cool-mcp-server.com/mcp/sse",
new_name_placeholder="Swiss army knife of MCPs",
)
with gr.Accordion("βš™οΈ Provider Configuration", open=True):
model_provider = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=None,
label="Select Model Provider",
)
aws_access_key_textbox = gr.Textbox(
label="AWS Access Key ID",
type="password",
placeholder="Enter your AWS Access Key ID",
visible=False,
)
aws_secret_key_textbox = gr.Textbox(
label="AWS Secret Access Key",
type="password",
placeholder="Enter your AWS Secret Access Key",
visible=False,
)
aws_region_dropdown = gr.Dropdown(
label="AWS Region",
choices=[
"us-east-1",
"us-west-2",
"eu-west-1",
"eu-central-1",
"ap-southeast-1",
],
value="eu-west-1",
visible=False,
)
aws_session_token_textbox = gr.Textbox(
label="AWS Session Token",
type="password",
placeholder="Enter your AWS session token",
visible=False,
)
hf_token = gr.Textbox(
label="HuggingFace Token",
type="password",
placeholder="Enter your Hugging Face Access Token",
visible=False,
)
with gr.Accordion("🧠 Model Configuration", open=True):
model_display_id = gr.Dropdown(
label="Select Model ID",
choices=[],
visible=False,
)
model_provider.change(
toggle_model_fields,
inputs=[model_provider],
outputs=[
model_display_id,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
hf_token,
],
)
# Initialize the temperature and max tokens based on model specifications
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
)
max_tokens = gr.Slider(
label="Max Tokens",
minimum=64,
maximum=4096,
value=512,
step=64,
)
connect_btn = gr.Button("πŸ”Œ Connect to Model", variant="primary")
status_textbox = gr.Textbox(label="Connection Status", interactive=False)
connect_btn.click(
update_connection_status,
inputs=[
model_provider,
model_display_id,
mcp_list.state,
aws_access_key_textbox,
aws_secret_key_textbox,
aws_session_token_textbox,
aws_region_dropdown,
hf_token,
temperature,
max_tokens,
],
outputs=[status_textbox],
)
with gr.Column(scale=2):
chat_interface = gr.ChatInterface(
fn=gr_chat_function,
type="messages",
examples=[], # Add examples if needed
title="πŸ‘©β€πŸ’» TDAgent",
description="This is a simple agent that uses MCP tools.",
)
if __name__ == "__main__":
gr_app.launch()