Ahmedik95316's picture
Update data/data_validator.py
c62a096 verified
# File: data/data_validator.py
# Comprehensive data validation pipeline with checkpoints and monitoring
import json
import time
import logging
import pandas as pd
from pathlib import Path
from datetime import datetime, timedelta
from typing import List, Dict, Any, Tuple, Optional, Union
from pydantic import ValidationError
import hashlib
from collections import defaultdict, Counter
# Import validation schemas
from .validation_schemas import (
NewsArticleSchema, TextContentSchema, LabelSchema, DataSourceSchema,
BatchValidationSchema, ValidationResultSchema, BatchValidationResultSchema,
ValidationLevel, TextQualityLevel, DataSource, NewsLabel
)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ValidationCheckpoint:
"""Individual validation checkpoint for pipeline monitoring"""
def __init__(self, name: str, description: str, validation_level: ValidationLevel = ValidationLevel.MODERATE):
self.name = name
self.description = description
self.validation_level = validation_level
self.start_time = None
self.end_time = None
self.results = []
self.errors = []
self.warnings = []
def start(self):
"""Start checkpoint timing"""
self.start_time = time.time()
logger.info(f"Starting validation checkpoint: {self.name}")
def end(self):
"""End checkpoint timing"""
self.end_time = time.time()
duration = self.processing_time
logger.info(f"Completed validation checkpoint: {self.name} ({duration:.2f}s)")
def add_result(self, result: ValidationResultSchema):
"""Add validation result"""
self.results.append(result)
def add_error(self, error: str):
"""Add validation error"""
self.errors.append(error)
logger.error(f"Checkpoint {self.name}: {error}")
def add_warning(self, warning: str):
"""Add validation warning"""
self.warnings.append(warning)
logger.warning(f"Checkpoint {self.name}: {warning}")
@property
def processing_time(self) -> float:
"""Calculate processing time"""
if self.start_time and self.end_time:
return self.end_time - self.start_time
return 0.0
@property
def success_rate(self) -> float:
"""Calculate success rate"""
if not self.results:
return 0.0
valid_count = sum(1 for result in self.results if result.is_valid)
return valid_count / len(self.results)
def to_dict(self) -> Dict[str, Any]:
"""Convert checkpoint to dictionary"""
return {
'name': self.name,
'description': self.description,
'validation_level': self.validation_level.value,
'processing_time': self.processing_time,
'total_validations': len(self.results),
'success_rate': self.success_rate,
'error_count': len(self.errors),
'warning_count': len(self.warnings),
'errors': self.errors,
'warnings': self.warnings
}
class DataValidationPipeline:
"""Comprehensive data validation pipeline with checkpoints and monitoring"""
def __init__(self, base_path: Optional[Path] = None):
self.base_path = base_path or Path("/tmp")
self.setup_paths()
self.checkpoints = {}
self.validation_history = []
self.quality_stats = defaultdict(int)
def setup_paths(self):
"""Setup validation paths"""
self.logs_dir = self.base_path / "logs"
self.validation_dir = self.base_path / "validation"
self.cache_dir = self.base_path / "cache"
# Create directories
for path in [self.logs_dir, self.validation_dir, self.cache_dir]:
path.mkdir(parents=True, exist_ok=True)
# Setup file paths
self.validation_log_path = self.logs_dir / "validation_log.json"
self.validation_stats_path = self.validation_dir / "validation_statistics.json"
self.failed_validations_path = self.validation_dir / "failed_validations.json"
self.quality_report_path = self.validation_dir / "quality_report.json"
def create_checkpoint(self, name: str, description: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationCheckpoint:
"""Create a new validation checkpoint"""
checkpoint = ValidationCheckpoint(name, description, validation_level)
self.checkpoints[name] = checkpoint
return checkpoint
def validate_single_article(self, text: str, label: int, source: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
**metadata) -> ValidationResultSchema:
"""Validate a single article with comprehensive checks"""
start_time = time.time()
errors = []
warnings = []
quality_metrics = {}
try:
# Create text content schema
text_content = TextContentSchema(text=text)
quality_metrics['word_count'] = text_content.word_count
quality_metrics['character_count'] = text_content.character_count
quality_metrics['sentence_count'] = text_content.sentence_count
except ValidationError as e:
for error in e.errors():
errors.append(f"Text validation: {error['msg']}")
try:
# Create label schema
label_info = LabelSchema(label=label)
except ValidationError as e:
for error in e.errors():
errors.append(f"Label validation: {error['msg']}")
try:
# Create source schema
source_info = DataSourceSchema(
source=DataSource(source),
timestamp=datetime.now(),
**{k: v for k, v in metadata.items() if k in ['url', 'batch_id']}
)
except ValidationError as e:
for error in e.errors():
errors.append(f"Source validation: {error['msg']}")
# Additional quality checks based on validation level
if validation_level in [ValidationLevel.MODERATE, ValidationLevel.STRICT]:
# Language detection (simplified)
if text:
english_words = {'the', 'and', 'is', 'in', 'to', 'of', 'a', 'that', 'it', 'with', 'for', 'as', 'was', 'on', 'are', 'you'}
words = set(text.lower().split())
english_ratio = len(words & english_words) / len(words) if words else 0
if english_ratio < 0.1:
warnings.append("Text may not be in English")
quality_metrics['english_ratio'] = english_ratio
# Content coherence check
if text and len(text.split()) > 10:
sentences = [s.strip() for s in text.split('.') if s.strip()]
if len(sentences) > 1:
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
quality_metrics['avg_sentence_length'] = avg_sentence_length
if avg_sentence_length < 3:
warnings.append("Very short average sentence length")
elif avg_sentence_length > 50:
warnings.append("Very long average sentence length")
if validation_level == ValidationLevel.STRICT:
# Advanced quality checks
if text:
# Check for AI-generated patterns (simplified)
ai_indicators = ['as an ai', 'i am an artificial', 'generated by', 'chatgpt', 'gpt-3', 'gpt-4']
if any(indicator in text.lower() for indicator in ai_indicators):
warnings.append("Text may be AI-generated")
# Check for template patterns
template_patterns = [r'\{[^}]+\}', r'\[[^\]]+\]', r'<[^>]+>']
import re
for pattern in template_patterns:
if re.search(pattern, text):
warnings.append("Text contains template patterns")
break
# Check readability (simplified Flesch reading ease)
words = text.split()
sentences = len([s for s in text.split('.') if s.strip()])
syllables = sum(max(1, len([c for c in word if c.lower() in 'aeiouy'])) for word in words)
if sentences > 0 and words:
avg_sentence_length = len(words) / sentences
avg_syllables = syllables / len(words)
# Simplified Flesch score
flesch_score = 206.835 - (1.015 * avg_sentence_length) - (84.6 * avg_syllables)
quality_metrics['flesch_score'] = flesch_score
if flesch_score < 30:
warnings.append("Text is very difficult to read")
elif flesch_score > 90:
warnings.append("Text is very easy to read (may be simplistic)")
# Calculate overall quality score
quality_score = self._calculate_quality_score(quality_metrics, errors, warnings)
quality_metrics['overall_quality_score'] = quality_score
# Determine if validation passed
is_valid = len(errors) == 0
processing_time = time.time() - start_time
return ValidationResultSchema(
is_valid=is_valid,
errors=errors,
warnings=warnings,
quality_metrics=quality_metrics,
validation_level=validation_level,
processing_time=processing_time
)
def validate_batch(self, articles_data: List[Dict[str, Any]],
batch_id: Optional[str] = None,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate a batch of articles with comprehensive reporting"""
if not batch_id:
batch_id = f"batch_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hashlib.md5(str(articles_data).encode()).hexdigest()[:8]}"
logger.info(f"Starting batch validation: {batch_id} ({len(articles_data)} articles)")
# Create validation checkpoint
checkpoint = self.create_checkpoint(
f"batch_validation_{batch_id}",
f"Batch validation for {len(articles_data)} articles",
validation_level
)
checkpoint.start()
validation_results = []
valid_count = 0
invalid_count = 0
quality_distribution = Counter()
source_distribution = Counter()
# Validate each article
for i, article_data in enumerate(articles_data):
try:
text = article_data.get('text', '')
label = article_data.get('label', 0)
source = article_data.get('source', 'unknown')
# Extract metadata
metadata = {k: v for k, v in article_data.items()
if k not in ['text', 'label', 'source']}
# Validate article
result = self.validate_single_article(
text, label, source, validation_level, **metadata
)
validation_results.append(result)
checkpoint.add_result(result)
if result.is_valid:
valid_count += 1
else:
invalid_count += 1
# Update distributions
quality_score = result.quality_metrics.get('overall_quality_score', 0)
if quality_score >= 0.8:
quality_level = 'high'
elif quality_score >= 0.6:
quality_level = 'medium'
elif quality_score >= 0.4:
quality_level = 'low'
else:
quality_level = 'invalid'
quality_distribution[quality_level] += 1
source_distribution[source] += 1
except Exception as e:
error_msg = f"Failed to validate article {i}: {str(e)}"
checkpoint.add_error(error_msg)
invalid_count += 1
checkpoint.end()
# Calculate overall quality score
if validation_results:
quality_scores = [r.quality_metrics.get('overall_quality_score', 0) for r in validation_results]
overall_quality_score = sum(quality_scores) / len(quality_scores)
else:
overall_quality_score = 0.0
# Create validation summary
validation_summary = {
'batch_id': batch_id,
'total_articles': len(articles_data),
'validation_level': validation_level.value,
'processing_time': checkpoint.processing_time,
'success_rate': checkpoint.success_rate,
'error_count': len(checkpoint.errors),
'warning_count': len(checkpoint.warnings),
'quality_metrics': {
'average_quality_score': overall_quality_score,
'quality_distribution': dict(quality_distribution),
'source_distribution': dict(source_distribution)
}
}
# Create batch validation result
batch_result = BatchValidationResultSchema(
batch_id=batch_id,
total_articles=len(articles_data),
valid_articles=valid_count,
invalid_articles=invalid_count,
validation_results=validation_results,
overall_quality_score=overall_quality_score,
quality_distribution=dict(quality_distribution),
source_distribution=dict(source_distribution),
validation_summary=validation_summary
)
# Log batch validation
self._log_batch_validation(batch_result)
# Update statistics
self._update_validation_statistics(batch_result)
logger.info(f"Batch validation completed: {batch_id} "
f"({valid_count}/{len(articles_data)} valid, "
f"quality: {overall_quality_score:.3f})")
return batch_result
def validate_dataframe(self, df: pd.DataFrame,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
"""Validate a pandas DataFrame"""
# Convert DataFrame to list of dictionaries
articles_data = df.to_dict('records')
return self.validate_batch(articles_data, batch_id, validation_level)
def validate_csv_file(self, file_path: Path,
validation_level: ValidationLevel = ValidationLevel.MODERATE,
batch_id: Optional[str] = None) -> BatchValidationResultSchema:
"""Validate articles from a CSV file"""
try:
df = pd.read_csv(file_path)
if batch_id is None:
batch_id = f"csv_{file_path.stem}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
return self.validate_dataframe(df, validation_level, batch_id)
except Exception as e:
logger.error(f"Failed to validate CSV file {file_path}: {e}")
raise
def validate_scraped_data(self, scraped_data: List[Dict[str, Any]],
source_name: str = "scraped_data") -> BatchValidationResultSchema:
"""Validate scraped data with specific checks for web content"""
# Create checkpoint for scraped data validation
checkpoint = self.create_checkpoint(
f"scraped_validation_{source_name}",
f"Validation for scraped data from {source_name}",
ValidationLevel.MODERATE
)
checkpoint.start()
# Add scraped-specific validation logic
enhanced_data = []
for item in scraped_data:
# Ensure required fields
if 'source' not in item:
item['source'] = 'scraped_real'
if 'label' not in item:
item['label'] = 0 # Default to real for scraped news
enhanced_data.append(item)
result = self.validate_batch(
enhanced_data,
f"scraped_{source_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
ValidationLevel.MODERATE
)
checkpoint.end()
# Additional scraped data quality checks
if result.overall_quality_score < 0.6:
checkpoint.add_warning(f"Low quality scraped data: {result.overall_quality_score:.3f}")
# Check for suspicious patterns in scraped data
suspicious_count = 0
for validation_result in result.validation_results:
if any('suspicious' in warning.lower() for warning in validation_result.warnings):
suspicious_count += 1
if suspicious_count > len(scraped_data) * 0.1: # More than 10% suspicious
checkpoint.add_warning(f"High number of suspicious articles: {suspicious_count}/{len(scraped_data)}")
return result
def _calculate_quality_score(self, quality_metrics: Dict[str, Any],
errors: List[str], warnings: List[str]) -> float:
"""Calculate overall quality score based on metrics and issues"""
base_score = 1.0
# Penalize for errors and warnings
base_score -= len(errors) * 0.2
base_score -= len(warnings) * 0.05
# Adjust based on content metrics
word_count = quality_metrics.get('word_count', 0)
if word_count < 20:
base_score -= 0.3
elif word_count < 50:
base_score -= 0.1
elif word_count > 1000:
base_score += 0.1
# Adjust based on readability
flesch_score = quality_metrics.get('flesch_score')
if flesch_score:
if 30 <= flesch_score <= 70: # Good readability range
base_score += 0.1
elif flesch_score < 10 or flesch_score > 90: # Poor readability
base_score -= 0.15
# Adjust based on English content ratio
english_ratio = quality_metrics.get('english_ratio')
if english_ratio:
if english_ratio >= 0.3:
base_score += 0.05
else:
base_score -= 0.1
return max(0.0, min(1.0, base_score))
def _log_batch_validation(self, batch_result: BatchValidationResultSchema):
"""Log batch validation results"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'batch_id': batch_result.batch_id,
'total_articles': batch_result.total_articles,
'valid_articles': batch_result.valid_articles,
'success_rate': batch_result.success_rate,
'overall_quality_score': batch_result.overall_quality_score,
'validation_summary': batch_result.validation_summary
}
# Load existing logs
logs = []
if self.validation_log_path.exists():
try:
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
except:
logs = []
logs.append(log_entry)
# Keep only last 1000 entries
if len(logs) > 1000:
logs = logs[-1000:]
# Save logs
with open(self.validation_log_path, 'w') as f:
json.dump(logs, f, indent=2)
except Exception as e:
logger.error(f"Failed to log batch validation: {e}")
def _update_validation_statistics(self, batch_result: BatchValidationResultSchema):
"""Update validation statistics"""
try:
# Load existing stats
stats = {}
if self.validation_stats_path.exists():
try:
with open(self.validation_stats_path, 'r') as f:
stats = json.load(f)
except:
stats = {}
# Initialize stats if empty
if not stats:
stats = {
'total_validations': 0,
'total_articles': 0,
'total_valid_articles': 0,
'average_quality_score': 0.0,
'validation_history': [],
'quality_trends': [],
'source_statistics': {},
'last_updated': None
}
# Update statistics
stats['total_validations'] += 1
stats['total_articles'] += batch_result.total_articles
stats['total_valid_articles'] += batch_result.valid_articles
# Update average quality score
current_avg = stats['average_quality_score']
total_validations = stats['total_validations']
stats['average_quality_score'] = (
(current_avg * (total_validations - 1) + batch_result.overall_quality_score) /
total_validations
)
# Add to history
history_entry = {
'timestamp': datetime.now().isoformat(),
'batch_id': batch_result.batch_id,
'quality_score': batch_result.overall_quality_score,
'success_rate': batch_result.success_rate,
'article_count': batch_result.total_articles
}
stats['validation_history'].append(history_entry)
stats['quality_trends'].append({
'timestamp': datetime.now().isoformat(),
'quality_score': batch_result.overall_quality_score
})
# Keep only last 100 history entries
if len(stats['validation_history']) > 100:
stats['validation_history'] = stats['validation_history'][-100:]
if len(stats['quality_trends']) > 100:
stats['quality_trends'] = stats['quality_trends'][-100:]
# Update source statistics
for source, count in batch_result.source_distribution.items():
if source not in stats['source_statistics']:
stats['source_statistics'][source] = {'total_articles': 0, 'total_validations': 0}
stats['source_statistics'][source]['total_articles'] += count
stats['source_statistics'][source]['total_validations'] += 1
stats['last_updated'] = datetime.now().isoformat()
# Save updated stats
with open(self.validation_stats_path, 'w') as f:
json.dump(stats, f, indent=2)
except Exception as e:
logger.error(f"Failed to update validation statistics: {e}")
def get_validation_statistics(self) -> Dict[str, Any]:
"""Get current validation statistics"""
try:
if self.validation_stats_path.exists():
with open(self.validation_stats_path, 'r') as f:
return json.load(f)
return {}
except Exception as e:
logger.error(f"Failed to load validation statistics: {e}")
return {}
def get_validation_history(self, limit: int = 50) -> List[Dict[str, Any]]:
"""Get validation history"""
try:
if self.validation_log_path.exists():
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
return logs[-limit:] if limit else logs
return []
except Exception as e:
logger.error(f"Failed to load validation history: {e}")
return []
def generate_quality_report(self) -> Dict[str, Any]:
"""Generate comprehensive quality report"""
try:
stats = self.get_validation_statistics()
if not stats:
return {'error': 'No validation statistics available'}
# Calculate trends
quality_trends = stats.get('quality_trends', [])
if len(quality_trends) >= 2:
recent_scores = [t['quality_score'] for t in quality_trends[-10:]]
older_scores = [t['quality_score'] for t in quality_trends[-20:-10]] if len(quality_trends) >= 20 else []
recent_avg = sum(recent_scores) / len(recent_scores)
older_avg = sum(older_scores) / len(older_scores) if older_scores else recent_avg
quality_trend = recent_avg - older_avg
else:
quality_trend = 0.0
# Generate report
report = {
'report_timestamp': datetime.now().isoformat(),
'overall_statistics': {
'total_validations': stats.get('total_validations', 0),
'total_articles': stats.get('total_articles', 0),
'overall_success_rate': (stats.get('total_valid_articles', 0) /
max(stats.get('total_articles', 1), 1)),
'average_quality_score': stats.get('average_quality_score', 0.0),
'quality_trend': quality_trend
},
'source_breakdown': stats.get('source_statistics', {}),
'recent_performance': {
'last_10_validations': quality_trends[-10:] if quality_trends else [],
'recent_average_quality': (sum(t['quality_score'] for t in quality_trends[-10:]) /
len(quality_trends[-10:])) if quality_trends else 0.0
},
'quality_assessment': self._assess_overall_quality(stats),
'recommendations': self._generate_recommendations(stats)
}
# Save report
with open(self.quality_report_path, 'w') as f:
json.dump(report, f, indent=2)
return report
except Exception as e:
logger.error(f"Failed to generate quality report: {e}")
return {'error': str(e)}
def _assess_overall_quality(self, stats: Dict[str, Any]) -> Dict[str, Any]:
"""Assess overall data quality"""
avg_quality = stats.get('average_quality_score', 0.0)
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
if avg_quality >= 0.8 and success_rate >= 0.9:
quality_level = 'excellent'
quality_color = 'green'
elif avg_quality >= 0.6 and success_rate >= 0.8:
quality_level = 'good'
quality_color = 'blue'
elif avg_quality >= 0.4 and success_rate >= 0.6:
quality_level = 'fair'
quality_color = 'yellow'
else:
quality_level = 'poor'
quality_color = 'red'
return {
'quality_level': quality_level,
'quality_color': quality_color,
'average_score': avg_quality,
'success_rate': success_rate,
'assessment': f"Data quality is {quality_level} with {success_rate:.1%} validation success rate"
}
def _generate_recommendations(self, stats: Dict[str, Any]) -> List[str]:
"""Generate quality improvement recommendations"""
recommendations = []
avg_quality = stats.get('average_quality_score', 0.0)
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
if avg_quality < 0.6:
recommendations.append("Improve data source quality - consider additional content filters")
if success_rate < 0.8:
recommendations.append("Review validation criteria - high failure rate detected")
source_stats = stats.get('source_statistics', {})
if source_stats:
# Find problematic sources
for source, source_info in source_stats.items():
if source_info.get('total_articles', 0) > 10: # Only check sources with enough data
# This is simplified - in practice you'd track success rates per source
pass
if len(recommendations) == 0:
recommendations.append("Data quality is satisfactory - continue current practices")
return recommendations
def cleanup_old_logs(self, days_to_keep: int = 30):
"""Clean up old validation logs"""
try:
cutoff_date = datetime.now() - timedelta(days=days_to_keep)
# Clean validation logs
if self.validation_log_path.exists():
with open(self.validation_log_path, 'r') as f:
logs = json.load(f)
filtered_logs = []
for log in logs:
try:
log_date = datetime.fromisoformat(log['timestamp'])
if log_date > cutoff_date:
filtered_logs.append(log)
except:
# Keep logs with invalid timestamps
filtered_logs.append(log)
with open(self.validation_log_path, 'w') as f:
json.dump(filtered_logs, f, indent=2)
logger.info(f"Cleaned up validation logs: kept {len(filtered_logs)}/{len(logs)} entries")
except Exception as e:
logger.error(f"Failed to cleanup old logs: {e}")
# Convenience functions for external use
def validate_text(text: str, label: int, source: str = "user_input",
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> ValidationResultSchema:
"""Validate a single text input"""
validator = DataValidationPipeline()
return validator.validate_single_article(text, label, source, validation_level)
def validate_articles_list(articles: List[Dict[str, Any]],
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate a list of articles"""
validator = DataValidationPipeline()
return validator.validate_batch(articles, validation_level=validation_level)
def validate_csv(file_path: str,
validation_level: ValidationLevel = ValidationLevel.MODERATE) -> BatchValidationResultSchema:
"""Validate articles from a CSV file"""
validator = DataValidationPipeline()
return validator.validate_csv_file(Path(file_path), validation_level)
def get_validation_stats() -> Dict[str, Any]:
"""Get current validation statistics"""
validator = DataValidationPipeline()
return validator.get_validation_statistics()
def generate_quality_report() -> Dict[str, Any]:
"""Generate quality report"""
validator = DataValidationPipeline()
return validator.generate_quality_report()
class DataValidator:
"""Simple validator for API requests"""
def __init__(self):
self.pipeline = DataValidationPipeline()
def validate_text(self, text: str) -> 'SimpleValidationResult':
"""Validate text input for API"""
try:
# Use the pipeline's validation method
result = self.pipeline.validate_single_article(
text=text,
label=0, # Dummy label for input validation
source="user_input",
validation_level=ValidationLevel.MODERATE
)
# Convert to simple result format
if result.is_valid:
if result.quality_metrics.get('overall_quality_score', 0) >= 0.8:
validation_level = TextQualityLevel.HIGH
elif result.quality_metrics.get('overall_quality_score', 0) >= 0.6:
validation_level = TextQualityLevel.MEDIUM
elif result.quality_metrics.get('overall_quality_score', 0) >= 0.3:
validation_level = TextQualityLevel.LOW
else:
validation_level = TextQualityLevel.INVALID
else:
validation_level = TextQualityLevel.INVALID
return SimpleValidationResult(
validation_level=validation_level,
quality_score=result.quality_metrics.get('overall_quality_score', 0.0),
issues=[SimpleIssue(message=error, issue_type="error") for error in result.errors] +
[SimpleIssue(message=warning, issue_type="warning") for warning in result.warnings]
)
except Exception as e:
return SimpleValidationResult(
validation_level=TextQualityLevel.INVALID,
quality_score=0.0,
issues=[SimpleIssue(message=f"Validation failed: {str(e)}", issue_type="error")]
)
class SimpleIssue:
"""Simple issue class for API validation"""
def __init__(self, message: str, issue_type: str):
self.message = message
self.issue_type = issue_type
def dict(self):
return {'message': self.message, 'type': self.issue_type}
class SimpleValidationResult:
"""Simple validation result for API"""
def __init__(self, validation_level: TextQualityLevel, quality_score: float, issues: List[SimpleIssue]):
self.validation_level = validation_level
self.quality_score = quality_score
self.issues = issues