Ahmedik95316's picture
Create traffic_router.py
569a9fd
import json
import time
import random
import joblib
import logging
import hashlib
from enum import Enum
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from typing import Dict, List, Optional, Any, Tuple
logger = logging.getLogger(__name__)
class RoutingStrategy(Enum):
ROUND_ROBIN = "round_robin"
WEIGHTED = "weighted"
HASH_BASED = "hash_based"
CANARY = "canary"
A_B_TEST = "a_b_test"
@dataclass
class RoutingRule:
"""Traffic routing rule configuration"""
rule_id: str
strategy: str
weights: Dict[str, int] # environment -> percentage
conditions: Dict[str, Any]
active: bool
created_at: str
updated_at: str
@dataclass
class RequestMetrics:
"""Metrics for individual requests"""
request_id: str
timestamp: str
environment: str # blue or green
response_time: float
status_code: int
confidence: Optional[float]
prediction: Optional[str]
client_id: Optional[str]
user_agent: Optional[str]
class TrafficRouter:
"""Intelligent traffic routing for blue-green deployments"""
def __init__(self, base_dir: Path = None):
self.base_dir = base_dir or Path("/tmp")
self.setup_router_paths()
self.setup_router_config()
# Current routing state
self.current_routing_rule = None
self.blue_model = None
self.green_model = None
self.blue_vectorizer = None
self.green_vectorizer = None
# Performance tracking
self.request_metrics = []
self.performance_cache = {}
# Load models and routing state
self.load_routing_state()
self.load_models()
def setup_router_paths(self):
"""Setup traffic router paths"""
self.router_dir = self.base_dir / "deployment" / "router"
self.router_dir.mkdir(parents=True, exist_ok=True)
# Router state files
self.routing_state_path = self.router_dir / "routing_state.json"
self.routing_rules_path = self.router_dir / "routing_rules.json"
self.request_log_path = self.router_dir / "request_log.json"
self.performance_log_path = self.router_dir / "performance_log.json"
# Model environment paths
self.blue_model_dir = self.base_dir / "deployment" / "models" / "blue"
self.green_model_dir = self.base_dir / "deployment" / "models" / "green"
def setup_router_config(self):
"""Setup router configuration"""
self.router_config = {
'default_routing': {
'strategy': RoutingStrategy.WEIGHTED.value,
'blue_weight': 100,
'green_weight': 0
},
'performance_tracking': {
'enable_metrics': True,
'metrics_buffer_size': 10000,
'performance_window_minutes': 60,
'cache_performance_seconds': 30
},
'routing_decisions': {
'hash_based_header': 'user-agent',
'canary_user_percentage': 5,
'a_b_test_hash_field': 'client_id',
'sticky_sessions': False
},
'health_checks': {
'enable_health_routing': True,
'unhealthy_weight': 0,
'health_check_interval': 30
}
}
def set_routing_weights(self, blue_weight: int, green_weight: int) -> bool:
"""Set traffic routing weights"""
try:
# Normalize weights to percentages
total_weight = blue_weight + green_weight
if total_weight == 0:
raise ValueError("Total weight cannot be zero")
blue_percentage = int((blue_weight / total_weight) * 100)
green_percentage = 100 - blue_percentage
# Create or update routing rule
routing_rule = RoutingRule(
rule_id=f"weight_rule_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
strategy=RoutingStrategy.WEIGHTED.value,
weights={'blue': blue_percentage, 'green': green_percentage},
conditions={},
active=True,
created_at=datetime.now().isoformat(),
updated_at=datetime.now().isoformat()
)
self.current_routing_rule = routing_rule
self.save_routing_state()
self.log_routing_event("weights_updated", f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%", {
'blue_weight': blue_percentage,
'green_weight': green_percentage
})
logger.info(f"Updated routing weights: Blue {blue_percentage}%, Green {green_percentage}%")
return True
except Exception as e:
logger.error(f"Failed to set routing weights: {e}")
return False
def route_request(self, request_data: Dict[str, Any]) -> str:
"""Route a request to blue or green environment"""
try:
if not self.current_routing_rule:
# Default to blue if no routing rule
return "blue"
strategy = self.current_routing_rule.strategy
if strategy == RoutingStrategy.WEIGHTED.value:
return self._route_weighted(request_data)
elif strategy == RoutingStrategy.ROUND_ROBIN.value:
return self._route_round_robin(request_data)
elif strategy == RoutingStrategy.HASH_BASED.value:
return self._route_hash_based(request_data)
elif strategy == RoutingStrategy.CANARY.value:
return self._route_canary(request_data)
elif strategy == RoutingStrategy.A_B_TEST.value:
return self._route_a_b_test(request_data)
else:
return "blue" # Default fallback
except Exception as e:
logger.error(f"Routing decision failed: {e}")
return "blue" # Safe fallback
def _route_weighted(self, request_data: Dict[str, Any]) -> str:
"""Route based on weighted distribution"""
weights = self.current_routing_rule.weights
blue_weight = weights.get('blue', 100)
green_weight = weights.get('green', 0)
# Generate random number 0-99
random_num = random.randint(0, 99)
# Route to green if random number is less than green weight
if random_num < green_weight:
return "green"
else:
return "blue"
def _route_round_robin(self, request_data: Dict[str, Any]) -> str:
"""Route using round-robin algorithm"""
# Simple counter-based round robin
request_count = len(self.request_metrics)
weights = self.current_routing_rule.weights
blue_weight = weights.get('blue', 50)
green_weight = weights.get('green', 50)
# Calculate cycle length based on weights
cycle_length = blue_weight + green_weight
position_in_cycle = request_count % cycle_length
if position_in_cycle < blue_weight:
return "blue"
else:
return "green"
def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
"""Route based on hash of request characteristics"""
def _route_hash_based(self, request_data: Dict[str, Any]) -> str:
"""Route based on hash of request characteristics"""
hash_field = self.router_config['routing_decisions']['hash_based_header']
hash_value = request_data.get(hash_field, 'default')
# Generate hash
hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
weights = self.current_routing_rule.weights
green_weight = weights.get('green', 0)
# Route based on hash modulo
if (hash_int % 100) < green_weight:
return "green"
else:
return "blue"
def _route_canary(self, request_data: Dict[str, Any]) -> str:
"""Route canary traffic to green environment"""
canary_percentage = self.router_config['routing_decisions']['canary_user_percentage']
# Use client ID or user agent for consistent canary routing
client_id = request_data.get('client_id') or request_data.get('user_agent', 'anonymous')
hash_digest = hashlib.md5(client_id.encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
if (hash_int % 100) < canary_percentage:
return "green" # Canary users get green
else:
return "blue" # Regular users get blue
def _route_a_b_test(self, request_data: Dict[str, Any]) -> str:
"""Route for A/B testing"""
hash_field = self.router_config['routing_decisions']['a_b_test_hash_field']
hash_value = request_data.get(hash_field, request_data.get('user_agent', 'default'))
# Generate consistent hash for A/B testing
hash_digest = hashlib.md5(str(hash_value).encode()).hexdigest()
hash_int = int(hash_digest[:8], 16)
weights = self.current_routing_rule.weights
green_weight = weights.get('green', 50) # Default 50/50 for A/B test
if (hash_int % 100) < green_weight:
return "green"
else:
return "blue"
def make_prediction(self, text: str, request_data: Dict[str, Any] = None) -> Tuple[str, Dict[str, Any]]:
"""Make prediction using routed model"""
request_id = f"req_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
start_time = time.time()
try:
# Determine routing
if request_data is None:
request_data = {}
environment = self.route_request(request_data)
# Get appropriate model and vectorizer
if environment == "green" and self.green_model and self.green_vectorizer:
model = self.green_model
vectorizer = self.green_vectorizer
else:
# Fallback to blue
environment = "blue"
model = self.blue_model
vectorizer = self.blue_vectorizer
if not model or not vectorizer:
raise ValueError(f"No model available for {environment} environment")
# Make prediction
X = vectorizer.transform([text])
prediction = model.predict(X)[0]
probabilities = model.predict_proba(X)[0]
confidence = float(max(probabilities))
# Convert prediction to readable format
label = "Fake" if prediction == 1 else "Real"
processing_time = time.time() - start_time
# Record metrics
self.record_request_metrics(
request_id=request_id,
environment=environment,
response_time=processing_time,
status_code=200,
confidence=confidence,
prediction=label,
client_id=request_data.get('client_id'),
user_agent=request_data.get('user_agent')
)
result = {
'prediction': label,
'confidence': confidence,
'processing_time': processing_time,
'environment': environment,
'request_id': request_id,
'model_version': 'unknown', # Could be enhanced with version info
'timestamp': datetime.now().isoformat()
}
return environment, result
except Exception as e:
processing_time = time.time() - start_time
# Record error metrics
self.record_request_metrics(
request_id=request_id,
environment=environment if 'environment' in locals() else 'unknown',
response_time=processing_time,
status_code=500,
confidence=None,
prediction=None,
client_id=request_data.get('client_id'),
user_agent=request_data.get('user_agent')
)
logger.error(f"Prediction failed: {e}")
raise e
def record_request_metrics(self, request_id: str, environment: str,
response_time: float, status_code: int,
confidence: Optional[float] = None,
prediction: Optional[str] = None,
client_id: Optional[str] = None,
user_agent: Optional[str] = None):
"""Record metrics for a request"""
try:
metrics = RequestMetrics(
request_id=request_id,
timestamp=datetime.now().isoformat(),
environment=environment,
response_time=response_time,
status_code=status_code,
confidence=confidence,
prediction=prediction,
client_id=client_id,
user_agent=user_agent
)
self.request_metrics.append(metrics)
# Keep buffer size manageable
buffer_size = self.router_config['performance_tracking']['metrics_buffer_size']
if len(self.request_metrics) > buffer_size:
self.request_metrics = self.request_metrics[-buffer_size:]
# Log to file periodically
if len(self.request_metrics) % 100 == 0:
self.save_request_metrics()
except Exception as e:
logger.error(f"Failed to record request metrics: {e}")
def get_environment_performance(self, environment: str, window_minutes: int = 60) -> Dict[str, Any]:
"""Get performance metrics for an environment"""
try:
# Check cache first
cache_key = f"{environment}_{window_minutes}"
cache_timeout = self.router_config['performance_tracking']['cache_performance_seconds']
if (cache_key in self.performance_cache and
time.time() - self.performance_cache[cache_key]['cached_at'] < cache_timeout):
return self.performance_cache[cache_key]['data']
# Calculate performance from recent metrics
cutoff_time = datetime.now() - timedelta(minutes=window_minutes)
relevant_metrics = [
m for m in self.request_metrics
if (m.environment == environment and
datetime.fromisoformat(m.timestamp) > cutoff_time)
]
if not relevant_metrics:
return {
'environment': environment,
'window_minutes': window_minutes,
'request_count': 0,
'avg_response_time': 0,
'error_rate': 0,
'avg_confidence': 0,
'requests_per_minute': 0
}
# Calculate metrics
response_times = [m.response_time for m in relevant_metrics]
error_count = len([m for m in relevant_metrics if m.status_code >= 400])
confidences = [m.confidence for m in relevant_metrics if m.confidence is not None]
performance = {
'environment': environment,
'window_minutes': window_minutes,
'request_count': len(relevant_metrics),
'avg_response_time': sum(response_times) / len(response_times),
'error_rate': error_count / len(relevant_metrics),
'avg_confidence': sum(confidences) / len(confidences) if confidences else 0,
'requests_per_minute': len(relevant_metrics) / window_minutes,
'p95_response_time': sorted(response_times)[int(len(response_times) * 0.95)] if response_times else 0,
'successful_requests': len(relevant_metrics) - error_count
}
# Cache result
self.performance_cache[cache_key] = {
'data': performance,
'cached_at': time.time()
}
return performance
except Exception as e:
logger.error(f"Failed to get environment performance: {e}")
return {'error': str(e)}
def compare_environment_performance(self, window_minutes: int = 60) -> Dict[str, Any]:
"""Compare performance between blue and green environments"""
try:
blue_perf = self.get_environment_performance('blue', window_minutes)
green_perf = self.get_environment_performance('green', window_minutes)
comparison = {
'timestamp': datetime.now().isoformat(),
'window_minutes': window_minutes,
'blue_performance': blue_perf,
'green_performance': green_perf,
'comparison': {}
}
if blue_perf.get('request_count', 0) > 0 and green_perf.get('request_count', 0) > 0:
# Calculate relative differences
comparison['comparison'] = {
'response_time_diff': green_perf['avg_response_time'] - blue_perf['avg_response_time'],
'error_rate_diff': green_perf['error_rate'] - blue_perf['error_rate'],
'confidence_diff': green_perf['avg_confidence'] - blue_perf['avg_confidence'],
'traffic_distribution': {
'blue_percentage': (blue_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100,
'green_percentage': (green_perf['request_count'] / (blue_perf['request_count'] + green_perf['request_count'])) * 100
}
}
# Add recommendations
recommendations = []
if green_perf['error_rate'] > blue_perf['error_rate'] * 1.5:
recommendations.append("Green environment has significantly higher error rate")
if green_perf['avg_response_time'] > blue_perf['avg_response_time'] * 1.5:
recommendations.append("Green environment has significantly slower response times")
if green_perf['avg_confidence'] < blue_perf['avg_confidence'] * 0.9:
recommendations.append("Green environment has lower prediction confidence")
comparison['recommendations'] = recommendations
return comparison
except Exception as e:
logger.error(f"Failed to compare environment performance: {e}")
return {'error': str(e)}
def load_models(self):
"""Load models for both environments"""
try:
# Load blue environment
blue_model_path = self.blue_model_dir / "model.pkl"
blue_vectorizer_path = self.blue_model_dir / "vectorizer.pkl"
if blue_model_path.exists() and blue_vectorizer_path.exists():
self.blue_model = joblib.load(blue_model_path)
self.blue_vectorizer = joblib.load(blue_vectorizer_path)
logger.info("Loaded blue environment models")
# Load green environment
green_model_path = self.green_model_dir / "model.pkl"
green_vectorizer_path = self.green_model_dir / "vectorizer.pkl"
if green_model_path.exists() and green_vectorizer_path.exists():
self.green_model = joblib.load(green_model_path)
self.green_vectorizer = joblib.load(green_vectorizer_path)
logger.info("Loaded green environment models")
except Exception as e:
logger.error(f"Failed to load models: {e}")
def get_routing_status(self) -> Dict[str, Any]:
"""Get current routing status"""
try:
status = {
'timestamp': datetime.now().isoformat(),
'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
'environment_status': {
'blue': {
'model_loaded': self.blue_model is not None,
'vectorizer_loaded': self.blue_vectorizer is not None
},
'green': {
'model_loaded': self.green_model is not None,
'vectorizer_loaded': self.green_vectorizer is not None
}
},
'recent_performance': {
'blue': self.get_environment_performance('blue', 15),
'green': self.get_environment_performance('green', 15)
},
'traffic_distribution': self._get_recent_traffic_distribution()
}
return status
except Exception as e:
logger.error(f"Failed to get routing status: {e}")
return {'error': str(e)}
def _get_recent_traffic_distribution(self) -> Dict[str, Any]:
"""Get recent traffic distribution"""
try:
cutoff_time = datetime.now() - timedelta(minutes=15)
recent_metrics = [
m for m in self.request_metrics
if datetime.fromisoformat(m.timestamp) > cutoff_time
]
if not recent_metrics:
return {'blue': 0, 'green': 0, 'total': 0}
blue_count = len([m for m in recent_metrics if m.environment == 'blue'])
green_count = len([m for m in recent_metrics if m.environment == 'green'])
total_count = len(recent_metrics)
return {
'blue': blue_count,
'green': green_count,
'total': total_count,
'blue_percentage': (blue_count / total_count) * 100 if total_count > 0 else 0,
'green_percentage': (green_count / total_count) * 100 if total_count > 0 else 0
}
except Exception as e:
logger.error(f"Failed to get traffic distribution: {e}")
return {'error': str(e)}
def save_routing_state(self):
"""Save current routing state"""
try:
state = {
'current_routing_rule': asdict(self.current_routing_rule) if self.current_routing_rule else None,
'last_updated': datetime.now().isoformat()
}
with open(self.routing_state_path, 'w') as f:
json.dump(state, f, indent=2)
except Exception as e:
logger.error(f"Failed to save routing state: {e}")
def load_routing_state(self):
"""Load routing state from file"""
try:
if self.routing_state_path.exists():
with open(self.routing_state_path, 'r') as f:
state = json.load(f)
if state.get('current_routing_rule'):
self.current_routing_rule = RoutingRule(**state['current_routing_rule'])
logger.info("Loaded routing state from file")
else:
# Set default routing rule
self.set_routing_weights(100, 0) # Default to 100% blue
except Exception as e:
logger.warning(f"Failed to load routing state: {e}")
# Set default routing rule
self.set_routing_weights(100, 0)
def save_request_metrics(self):
"""Save request metrics to file"""
try:
# Save last 1000 metrics
metrics_to_save = self.request_metrics[-1000:]
metrics_data = [asdict(m) for m in metrics_to_save]
with open(self.request_log_path, 'w') as f:
json.dump(metrics_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to save request metrics: {e}")
def log_routing_event(self, event: str, message: str, details: Dict = None):
"""Log routing events"""
try:
log_entry = {
'timestamp': datetime.now().isoformat(),
'event': event,
'message': message,
'details': details or {}
}
# This could be enhanced to save to a separate routing events log
logger.info(f"Routing event: {event} - {message}")
except Exception as e:
logger.error(f"Failed to log routing event: {e}")
def cleanup_old_metrics(self, days: int = 7):
"""Clean up old metrics data"""
try:
cutoff_time = datetime.now() - timedelta(days=days)
# Filter recent metrics
self.request_metrics = [
m for m in self.request_metrics
if datetime.fromisoformat(m.timestamp) > cutoff_time
]
# Clear performance cache
self.performance_cache.clear()
logger.info(f"Cleaned up metrics older than {days} days")
except Exception as e:
logger.error(f"Failed to cleanup old metrics: {e}")