Ahmedik95316's picture
Create metrics_collector.py
e397da1
import json
import time
import psutil
import logging
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from collections import defaultdict, deque
from typing import Dict, List, Optional, Any
logger = logging.getLogger(__name__)
@dataclass
class SystemMetrics:
"""System resource metrics"""
timestamp: str
cpu_percent: float
memory_percent: float
memory_used_mb: float
memory_total_mb: float
disk_usage_percent: float
disk_free_gb: float
load_average: Optional[float] = None
@dataclass
class APIMetrics:
"""API performance metrics"""
timestamp: str
total_requests: int
requests_per_minute: float
avg_response_time: float
error_count: int
error_rate: float
active_connections: int
endpoint_stats: Dict[str, Dict[str, Any]]
@dataclass
class ModelMetrics:
"""Model performance metrics"""
timestamp: str
model_version: str
predictions_made: int
avg_confidence: float
confidence_distribution: Dict[str, int]
prediction_distribution: Dict[str, int]
processing_time_stats: Dict[str, float]
model_health_score: float
class MetricsCollector:
"""Comprehensive metrics collection and aggregation system"""
def __init__(self, base_dir: Path):
self.base_dir = Path(base_dir)
self.monitor_dir = self.base_dir / "monitor"
self.monitor_dir.mkdir(parents=True, exist_ok=True)
# Storage paths
self.system_metrics_path = self.monitor_dir / "system_metrics.json"
self.api_metrics_path = self.monitor_dir / "api_metrics.json"
self.model_metrics_path = self.monitor_dir / "model_metrics.json"
self.aggregated_metrics_path = self.monitor_dir / "aggregated_metrics.json"
# In-memory storage
self.system_metrics_history = deque(maxlen=1440) # 24 hours
self.api_metrics_history = deque(maxlen=1440)
self.model_metrics_history = deque(maxlen=1440)
# Request tracking
self.request_tracker = defaultdict(list)
self.endpoint_stats = defaultdict(lambda: {
'count': 0,
'total_time': 0.0,
'errors': 0,
'last_request': None
})
# Performance baselines
self.baselines = {
'response_time': 2.0,
'cpu_usage': 70.0,
'memory_usage': 80.0,
'error_rate': 0.05
}
self.load_historical_metrics()
def collect_system_metrics(self) -> SystemMetrics:
"""Collect current system resource metrics"""
try:
# CPU and memory
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
# Disk usage
disk = psutil.disk_usage('/')
# Load average (Unix systems)
load_avg = None
try:
load_avg = psutil.getloadavg()[0] # 1-minute load average
except AttributeError:
# Windows doesn't have getloadavg
pass
metrics = SystemMetrics(
timestamp=datetime.now().isoformat(),
cpu_percent=cpu_percent,
memory_percent=memory.percent,
memory_used_mb=memory.used / (1024 * 1024),
memory_total_mb=memory.total / (1024 * 1024),
disk_usage_percent=(disk.used / disk.total) * 100,
disk_free_gb=disk.free / (1024 * 1024 * 1024),
load_average=load_avg
)
# Store in history
self.system_metrics_history.append(metrics)
self._append_to_log(self.system_metrics_path, asdict(metrics))
return metrics
except Exception as e:
logger.error(f"Failed to collect system metrics: {e}")
return SystemMetrics(
timestamp=datetime.now().isoformat(),
cpu_percent=0.0,
memory_percent=0.0,
memory_used_mb=0.0,
memory_total_mb=0.0,
disk_usage_percent=0.0,
disk_free_gb=0.0
)
def record_api_request(self,
endpoint: str,
method: str,
response_time: float,
status_code: int,
client_ip: Optional[str] = None):
"""Record an API request"""
timestamp = datetime.now()
# Track request
request_data = {
'timestamp': timestamp.isoformat(),
'endpoint': endpoint,
'method': method,
'response_time': response_time,
'status_code': status_code,
'client_ip': client_ip
}
# Add to request tracker for rate calculation
self.request_tracker[timestamp.minute].append(request_data)
# Update endpoint statistics
endpoint_key = f"{method} {endpoint}"
stats = self.endpoint_stats[endpoint_key]
stats['count'] += 1
stats['total_time'] += response_time
stats['last_request'] = timestamp.isoformat()
if status_code >= 400:
stats['errors'] += 1
# Clean old request data (keep last 5 minutes)
cutoff_minute = (timestamp - timedelta(minutes=5)).minute
keys_to_remove = [k for k in self.request_tracker.keys() if k < cutoff_minute]
for key in keys_to_remove:
del self.request_tracker[key]
def collect_api_metrics(self) -> APIMetrics:
"""Collect current API performance metrics"""
now = datetime.now()
# Calculate requests in last minute
current_minute_requests = self.request_tracker.get(now.minute, [])
last_minute_requests = self.request_tracker.get((now - timedelta(minutes=1)).minute, [])
recent_requests = current_minute_requests + last_minute_requests
# Calculate metrics
total_requests = sum(len(requests) for requests in self.request_tracker.values())
requests_per_minute = len(recent_requests)
if recent_requests:
avg_response_time = np.mean([r['response_time'] for r in recent_requests])
error_count = len([r for r in recent_requests if r['status_code'] >= 400])
error_rate = error_count / len(recent_requests)
else:
avg_response_time = 0.0
error_count = 0
error_rate = 0.0
# Endpoint statistics
endpoint_stats = {}
for endpoint, stats in self.endpoint_stats.items():
if stats['count'] > 0:
endpoint_stats[endpoint] = {
'count': stats['count'],
'avg_response_time': stats['total_time'] / stats['count'],
'error_count': stats['errors'],
'error_rate': stats['errors'] / stats['count'],
'last_request': stats['last_request']
}
metrics = APIMetrics(
timestamp=now.isoformat(),
total_requests=total_requests,
requests_per_minute=requests_per_minute,
avg_response_time=avg_response_time,
error_count=error_count,
error_rate=error_rate,
active_connections=0, # This would need actual connection tracking
endpoint_stats=endpoint_stats
)
# Store in history
self.api_metrics_history.append(metrics)
self._append_to_log(self.api_metrics_path, asdict(metrics))
return metrics
def collect_model_metrics(self, prediction_monitor) -> ModelMetrics:
"""Collect model performance metrics"""
try:
current_metrics = prediction_monitor.get_current_metrics()
recent_predictions = prediction_monitor._get_recent_predictions(minutes=60)
if recent_predictions:
processing_times = [p.processing_time for p in recent_predictions]
processing_time_stats = {
'mean': float(np.mean(processing_times)),
'std': float(np.std(processing_times)),
'min': float(np.min(processing_times)),
'max': float(np.max(processing_times)),
'p95': float(np.percentile(processing_times, 95))
}
# Calculate model health score
health_score = self._calculate_model_health_score(current_metrics, processing_time_stats)
model_version = recent_predictions[0].model_version if recent_predictions else "unknown"
else:
processing_time_stats = {}
health_score = 0.0
model_version = "unknown"
metrics = ModelMetrics(
timestamp=datetime.now().isoformat(),
model_version=model_version,
predictions_made=current_metrics.total_predictions,
avg_confidence=current_metrics.avg_confidence,
confidence_distribution=current_metrics.confidence_distribution,
prediction_distribution=current_metrics.prediction_distribution,
processing_time_stats=processing_time_stats,
model_health_score=health_score
)
# Store in history
self.model_metrics_history.append(metrics)
self._append_to_log(self.model_metrics_path, asdict(metrics))
return metrics
except Exception as e:
logger.error(f"Failed to collect model metrics: {e}")
return ModelMetrics(
timestamp=datetime.now().isoformat(),
model_version="unknown",
predictions_made=0,
avg_confidence=0.0,
confidence_distribution={},
prediction_distribution={},
processing_time_stats={},
model_health_score=0.0
)
def get_aggregated_metrics(self, hours: int = 1) -> Dict[str, Any]:
"""Get aggregated metrics for specified time period"""
cutoff_time = datetime.now() - timedelta(hours=hours)
# Filter recent metrics
recent_system = [m for m in self.system_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_api = [m for m in self.api_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_model = [m for m in self.model_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
aggregated = {
'timestamp': datetime.now().isoformat(),
'time_period_hours': hours,
'system_metrics': self._aggregate_system_metrics(recent_system),
'api_metrics': self._aggregate_api_metrics(recent_api),
'model_metrics': self._aggregate_model_metrics(recent_model),
'overall_health_score': 0.0,
'alerts': self._generate_metric_alerts(recent_system, recent_api, recent_model)
}
# Calculate overall health score
aggregated['overall_health_score'] = self._calculate_overall_health_score(aggregated)
# Save aggregated metrics
self._append_to_log(self.aggregated_metrics_path, aggregated)
return aggregated
def get_performance_trends(self, hours: int = 24) -> Dict[str, Any]:
"""Analyze performance trends over time"""
cutoff_time = datetime.now() - timedelta(hours=hours)
# Get historical data
recent_system = [m for m in self.system_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_api = [m for m in self.api_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
recent_model = [m for m in self.model_metrics_history
if datetime.fromisoformat(m.timestamp) > cutoff_time]
trends = {
'timestamp': datetime.now().isoformat(),
'analysis_period_hours': hours,
'system_trends': self._analyze_system_trends(recent_system),
'api_trends': self._analyze_api_trends(recent_api),
'model_trends': self._analyze_model_trends(recent_model),
'correlation_analysis': self._analyze_correlations(recent_system, recent_api, recent_model)
}
return trends
def get_real_time_dashboard_data(self) -> Dict[str, Any]:
"""Get current data for real-time dashboard"""
try:
# Get latest metrics
latest_system = self.system_metrics_history[-1] if self.system_metrics_history else None
latest_api = self.api_metrics_history[-1] if self.api_metrics_history else None
latest_model = self.model_metrics_history[-1] if self.model_metrics_history else None
# Get recent trends (last hour)
recent_aggregated = self.get_aggregated_metrics(hours=1)
dashboard_data = {
'timestamp': datetime.now().isoformat(),
'status': self._determine_system_status(latest_system, latest_api, latest_model),
'current_metrics': {
'system': asdict(latest_system) if latest_system else None,
'api': asdict(latest_api) if latest_api else None,
'model': asdict(latest_model) if latest_model else None
},
'hourly_summary': recent_aggregated,
'active_alerts': self._get_active_alerts(),
'key_indicators': self._get_key_indicators(latest_system, latest_api, latest_model)
}
return dashboard_data
except Exception as e:
logger.error(f"Failed to get dashboard data: {e}")
return {
'timestamp': datetime.now().isoformat(),
'status': 'unknown',
'error': str(e)
}
def _calculate_model_health_score(self, metrics, processing_stats: Dict) -> float:
"""Calculate overall model health score (0-1)"""
scores = []
# Confidence score
if metrics.avg_confidence > 0:
confidence_score = min(metrics.avg_confidence / 0.8, 1.0) # Target: 80%+
scores.append(confidence_score)
# Processing time score
if processing_stats and 'mean' in processing_stats:
processing_score = max(0, 1.0 - (processing_stats['mean'] / 10.0)) # Target: <10s
scores.append(processing_score)
# Error rate score
error_score = max(0, 1.0 - (metrics.error_rate / 0.1)) # Target: <10%
scores.append(error_score)
# Prediction rate score (activity indicator)
if metrics.predictions_per_minute > 0:
activity_score = min(metrics.predictions_per_minute / 10.0, 1.0) # Normalize to 10 req/min
scores.append(activity_score)
return float(np.mean(scores)) if scores else 0.0
def _aggregate_system_metrics(self, metrics: List[SystemMetrics]) -> Dict[str, Any]:
"""Aggregate system metrics"""
if not metrics:
return {}
cpu_values = [m.cpu_percent for m in metrics]
memory_values = [m.memory_percent for m in metrics]
disk_values = [m.disk_usage_percent for m in metrics]
return {
'cpu_usage': {
'avg': float(np.mean(cpu_values)),
'max': float(np.max(cpu_values)),
'min': float(np.min(cpu_values)),
'current': cpu_values[-1]
},
'memory_usage': {
'avg': float(np.mean(memory_values)),
'max': float(np.max(memory_values)),
'min': float(np.min(memory_values)),
'current': memory_values[-1]
},
'disk_usage': {
'avg': float(np.mean(disk_values)),
'max': float(np.max(disk_values)),
'min': float(np.min(disk_values)),
'current': disk_values[-1]
},
'sample_count': len(metrics)
}
def _aggregate_api_metrics(self, metrics: List[APIMetrics]) -> Dict[str, Any]:
"""Aggregate API metrics"""
if not metrics:
return {}
response_times = [m.avg_response_time for m in metrics]
error_rates = [m.error_rate for m in metrics]
request_rates = [m.requests_per_minute for m in metrics]
return {
'response_time': {
'avg': float(np.mean(response_times)),
'max': float(np.max(response_times)),
'min': float(np.min(response_times)),
'p95': float(np.percentile(response_times, 95))
},
'error_rate': {
'avg': float(np.mean(error_rates)),
'max': float(np.max(error_rates)),
'current': error_rates[-1]
},
'request_rate': {
'avg': float(np.mean(request_rates)),
'max': float(np.max(request_rates)),
'current': request_rates[-1]
},
'total_requests': sum(m.total_requests for m in metrics),
'sample_count': len(metrics)
}
def _aggregate_model_metrics(self, metrics: List[ModelMetrics]) -> Dict[str, Any]:
"""Aggregate model metrics"""
if not metrics:
return {}
confidences = [m.avg_confidence for m in metrics]
health_scores = [m.model_health_score for m in metrics]
return {
'confidence': {
'avg': float(np.mean(confidences)),
'min': float(np.min(confidences)),
'max': float(np.max(confidences)),
'current': confidences[-1]
},
'health_score': {
'avg': float(np.mean(health_scores)),
'min': float(np.min(health_scores)),
'current': health_scores[-1]
},
'total_predictions': sum(m.predictions_made for m in metrics),
'sample_count': len(metrics)
}
def _analyze_system_trends(self, metrics: List[SystemMetrics]) -> Dict[str, Any]:
"""Analyze system metric trends"""
if len(metrics) < 2:
return {}
cpu_values = [m.cpu_percent for m in metrics]
memory_values = [m.memory_percent for m in metrics]
return {
'cpu_trend': self._calculate_trend(cpu_values),
'memory_trend': self._calculate_trend(memory_values),
'stability_score': self._calculate_stability_score(cpu_values, memory_values)
}
def _analyze_api_trends(self, metrics: List[APIMetrics]) -> Dict[str, Any]:
"""Analyze API metric trends"""
if len(metrics) < 2:
return {}
response_times = [m.avg_response_time for m in metrics]
error_rates = [m.error_rate for m in metrics]
return {
'response_time_trend': self._calculate_trend(response_times),
'error_rate_trend': self._calculate_trend(error_rates),
'performance_score': self._calculate_performance_score(response_times, error_rates)
}
def _analyze_model_trends(self, metrics: List[ModelMetrics]) -> Dict[str, Any]:
"""Analyze model metric trends"""
if len(metrics) < 2:
return {}
confidences = [m.avg_confidence for m in metrics]
health_scores = [m.model_health_score for m in metrics]
return {
'confidence_trend': self._calculate_trend(confidences),
'health_trend': self._calculate_trend(health_scores),
'model_stability': self._calculate_model_stability(confidences)
}
def _calculate_trend(self, values: List[float]) -> str:
"""Calculate trend direction"""
if len(values) < 2:
return 'stable'
recent_avg = np.mean(values[-5:]) # Last 5 values
older_avg = np.mean(values[:-5]) if len(values) > 5 else np.mean(values[:-2])
change_percent = ((recent_avg - older_avg) / older_avg) * 100 if older_avg != 0 else 0
if change_percent > 5:
return 'increasing'
elif change_percent < -5:
return 'decreasing'
else:
return 'stable'
def _calculate_stability_score(self, *value_lists) -> float:
"""Calculate stability score based on coefficient of variation"""
scores = []
for values in value_lists:
if values and len(values) > 1:
cv = np.std(values) / np.mean(values) if np.mean(values) > 0 else 1
stability = max(0, 1 - cv)
scores.append(stability)
return float(np.mean(scores)) if scores else 0.0
def _calculate_performance_score(self, response_times: List[float], error_rates: List[float]) -> float:
"""Calculate overall performance score"""
scores = []
# Response time score
if response_times:
avg_response_time = np.mean(response_times)
response_score = max(0, 1 - (avg_response_time / self.baselines['response_time']))
scores.append(response_score)
# Error rate score
if error_rates:
avg_error_rate = np.mean(error_rates)
error_score = max(0, 1 - (avg_error_rate / self.baselines['error_rate']))
scores.append(error_score)
return float(np.mean(scores)) if scores else 0.0
def _calculate_model_stability(self, confidences: List[float]) -> float:
"""Calculate model stability based on confidence consistency"""
if not confidences or len(confidences) < 2:
return 0.0
cv = np.std(confidences) / np.mean(confidences) if np.mean(confidences) > 0 else 1
return float(max(0, 1 - cv))
def _analyze_correlations(self, system_metrics, api_metrics, model_metrics) -> Dict[str, Any]:
"""Analyze correlations between different metric types"""
correlations = {}
try:
if system_metrics and api_metrics:
cpu_values = [m.cpu_percent for m in system_metrics]
response_times = [m.avg_response_time for m in api_metrics]
if len(cpu_values) == len(response_times) and len(cpu_values) > 1:
correlation = np.corrcoef(cpu_values, response_times)[0, 1]
correlations['cpu_response_time'] = float(correlation)
# Add more correlation analyses as needed
except Exception as e:
logger.error(f"Error calculating correlations: {e}")
return correlations
def _calculate_overall_health_score(self, aggregated: Dict) -> float:
"""Calculate overall system health score"""
scores = []
# System health
system_metrics = aggregated.get('system_metrics', {})
if system_metrics:
cpu_score = max(0, 1 - (system_metrics['cpu_usage']['current'] / 100))
memory_score = max(0, 1 - (system_metrics['memory_usage']['current'] / 100))
scores.extend([cpu_score, memory_score])
# API health
api_metrics = aggregated.get('api_metrics', {})
if api_metrics:
response_score = max(0, 1 - (api_metrics['response_time']['current'] / 10))
error_score = max(0, 1 - api_metrics['error_rate']['current'])
scores.extend([response_score, error_score])
# Model health
model_metrics = aggregated.get('model_metrics', {})
if model_metrics:
model_score = model_metrics['health_score']['current']
scores.append(model_score)
return float(np.mean(scores)) if scores else 0.0
def _generate_metric_alerts(self, system_metrics, api_metrics, model_metrics) -> List[Dict]:
"""Generate alerts based on metric thresholds"""
alerts = []
# System alerts
if system_metrics:
latest_system = system_metrics[-1]
if latest_system.cpu_percent > self.baselines['cpu_usage']:
alerts.append({
'type': 'warning',
'category': 'system',
'message': f"High CPU usage: {latest_system.cpu_percent:.1f}%",
'timestamp': latest_system.timestamp
})
if latest_system.memory_percent > self.baselines['memory_usage']:
alerts.append({
'type': 'warning',
'category': 'system',
'message': f"High memory usage: {latest_system.memory_percent:.1f}%",
'timestamp': latest_system.timestamp
})
# API alerts
if api_metrics:
latest_api = api_metrics[-1]
if latest_api.avg_response_time > self.baselines['response_time']:
alerts.append({
'type': 'warning',
'category': 'api',
'message': f"Slow response time: {latest_api.avg_response_time:.2f}s",
'timestamp': latest_api.timestamp
})
if latest_api.error_rate > self.baselines['error_rate']:
alerts.append({
'type': 'critical',
'category': 'api',
'message': f"High error rate: {latest_api.error_rate:.2%}",
'timestamp': latest_api.timestamp
})
return alerts
def _determine_system_status(self, system_metrics, api_metrics, model_metrics) -> str:
"""Determine overall system status"""
if not system_metrics or not api_metrics or not model_metrics:
return 'unknown'
# Check for critical issues
if (system_metrics.cpu_percent > 90 or
system_metrics.memory_percent > 95 or
api_metrics.error_rate > 0.1 or
api_metrics.avg_response_time > 10):
return 'critical'
# Check for warnings
if (system_metrics.cpu_percent > 70 or
system_metrics.memory_percent > 80 or
api_metrics.error_rate > 0.05 or
api_metrics.avg_response_time > 5 or
model_metrics.avg_confidence < 0.6):
return 'warning'
return 'healthy'
def _get_active_alerts(self) -> List[Dict]:
"""Get currently active alerts"""
# This would typically read from alerts log and filter recent alerts
return []
def _get_key_indicators(self, system_metrics, api_metrics, model_metrics) -> Dict[str, Any]:
"""Get key performance indicators"""
indicators = {}
if system_metrics:
indicators['cpu_usage'] = system_metrics.cpu_percent
indicators['memory_usage'] = system_metrics.memory_percent
if api_metrics:
indicators['response_time'] = api_metrics.avg_response_time
indicators['requests_per_minute'] = api_metrics.requests_per_minute
if model_metrics:
indicators['model_confidence'] = model_metrics.avg_confidence
indicators['model_health'] = model_metrics.model_health_score
return indicators
def _append_to_log(self, log_path: Path, data: Dict):
"""Append data to log file"""
try:
with open(log_path, 'a') as f:
f.write(json.dumps(data) + '\n')
except Exception as e:
logger.error(f"Failed to write to log {log_path}: {e}")
def load_historical_metrics(self):
"""Load historical metrics on startup"""
try:
# Load recent metrics (last 24 hours)
cutoff_time = datetime.now() - timedelta(hours=24)
for log_path, history_deque, metric_class in [
(self.system_metrics_path, self.system_metrics_history, SystemMetrics),
(self.api_metrics_path, self.api_metrics_history, APIMetrics),
(self.model_metrics_path, self.model_metrics_history, ModelMetrics)
]:
if log_path.exists():
with open(log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
if datetime.fromisoformat(data['timestamp']) > cutoff_time:
metric = metric_class(**data)
history_deque.append(metric)
except Exception:
continue
logger.info(f"Loaded historical metrics: {len(self.system_metrics_history)} system, "
f"{len(self.api_metrics_history)} API, {len(self.model_metrics_history)} model")
except Exception as e:
logger.error(f"Failed to load historical metrics: {e}")