Fake-News-Detection-with-MLOps / monitor /prediction_monitor.py
Ahmedik95316's picture
Create prediction_monitor.py
69713db
import json
import time
import logging
import threading
import numpy as np
from pathlib import Path
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from collections import deque, defaultdict
from typing import Dict, List, Optional, Any, Tuple
logger = logging.getLogger(__name__)
@dataclass
class PredictionRecord:
"""Individual prediction record with metadata"""
timestamp: str
text_hash: str
prediction: str
confidence: float
processing_time: float
model_version: str
text_length: int
word_count: int
client_id: Optional[str] = None
user_agent: Optional[str] = None
session_id: Optional[str] = None
@dataclass
class MonitoringMetrics:
"""Aggregated monitoring metrics"""
timestamp: str
total_predictions: int
predictions_per_minute: float
avg_confidence: float
avg_processing_time: float
confidence_distribution: Dict[str, int]
prediction_distribution: Dict[str, int]
error_rate: float
response_time_percentiles: Dict[str, float]
anomaly_score: float
class PredictionMonitor:
"""Real-time prediction monitoring system"""
def __init__(self, base_dir: Path):
self.base_dir = Path(base_dir)
self.monitor_dir = self.base_dir / "monitor"
self.monitor_dir.mkdir(parents=True, exist_ok=True)
# Storage paths
self.predictions_log_path = self.monitor_dir / "predictions.json"
self.metrics_log_path = self.monitor_dir / "metrics.json"
self.alerts_log_path = self.monitor_dir / "alerts.json"
# In-memory storage for real-time analysis
self.recent_predictions = deque(maxlen=10000) # Last 10k predictions
self.prediction_buffer = deque(maxlen=1000) # Buffer for batch processing
# Metrics tracking
self.metrics_history = deque(maxlen=1440) # 24 hours of minute-level metrics
self.error_count = 0
self.total_predictions = 0
# Configuration
self.confidence_thresholds = {
'very_low': 0.5,
'low': 0.7,
'medium': 0.8,
'high': 0.9
}
self.performance_thresholds = {
'response_time_warning': 5.0, # seconds
'response_time_critical': 10.0,
'confidence_warning': 0.6, # average confidence below this
'error_rate_warning': 0.05, # 5% error rate
'error_rate_critical': 0.10 # 10% error rate
}
# Background processing
self.monitoring_active = False
self.monitoring_thread = None
# Load existing data
self.load_historical_data()
def start_monitoring(self):
"""Start background monitoring thread"""
if not self.monitoring_active:
self.monitoring_active = True
self.monitoring_thread = threading.Thread(target=self._monitoring_loop, daemon=True)
self.monitoring_thread.start()
logger.info("Prediction monitoring started")
def stop_monitoring(self):
"""Stop background monitoring"""
self.monitoring_active = False
if self.monitoring_thread:
self.monitoring_thread.join(timeout=5)
logger.info("Prediction monitoring stopped")
def record_prediction(self,
prediction: str,
confidence: float,
processing_time: float,
text: str,
model_version: str = "unknown",
client_id: Optional[str] = None,
user_agent: Optional[str] = None,
session_id: Optional[str] = None) -> str:
"""Record a new prediction with comprehensive metadata"""
# Create prediction record
text_hash = self._hash_text(text)
record = PredictionRecord(
timestamp=datetime.now().isoformat(),
text_hash=text_hash,
prediction=prediction,
confidence=confidence,
processing_time=processing_time,
model_version=model_version,
text_length=len(text),
word_count=len(text.split()),
client_id=client_id,
user_agent=user_agent,
session_id=session_id
)
# Add to in-memory storage
self.recent_predictions.append(record)
self.prediction_buffer.append(record)
self.total_predictions += 1
# Trigger batch processing if buffer is full
if len(self.prediction_buffer) >= 100:
self._process_prediction_batch()
return text_hash
def record_error(self, error_type: str, error_message: str, context: Dict = None):
"""Record prediction error"""
self.error_count += 1
error_record = {
'timestamp': datetime.now().isoformat(),
'error_type': error_type,
'error_message': error_message,
'context': context or {},
'total_errors': self.error_count,
'error_rate': self.get_current_error_rate()
}
# Save error to alerts log
self._append_to_log(self.alerts_log_path, error_record)
# Check if error rate exceeds thresholds
self._check_error_rate_alerts()
def get_current_metrics(self) -> MonitoringMetrics:
"""Get current real-time metrics"""
now = datetime.now()
recent_predictions = self._get_recent_predictions(minutes=5)
if not recent_predictions:
return MonitoringMetrics(
timestamp=now.isoformat(),
total_predictions=self.total_predictions,
predictions_per_minute=0.0,
avg_confidence=0.0,
avg_processing_time=0.0,
confidence_distribution={},
prediction_distribution={},
error_rate=0.0,
response_time_percentiles={},
anomaly_score=0.0
)
# Calculate metrics
confidences = [p.confidence for p in recent_predictions]
processing_times = [p.processing_time for p in recent_predictions]
predictions = [p.prediction for p in recent_predictions]
return MonitoringMetrics(
timestamp=now.isoformat(),
total_predictions=self.total_predictions,
predictions_per_minute=len(recent_predictions) / 5.0,
avg_confidence=float(np.mean(confidences)),
avg_processing_time=float(np.mean(processing_times)),
confidence_distribution=self._calculate_confidence_distribution(confidences),
prediction_distribution=self._calculate_prediction_distribution(predictions),
error_rate=self.get_current_error_rate(),
response_time_percentiles=self._calculate_percentiles(processing_times),
anomaly_score=self._calculate_anomaly_score(recent_predictions)
)
def get_historical_metrics(self, hours: int = 24) -> List[MonitoringMetrics]:
"""Get historical metrics for specified time period"""
cutoff_time = datetime.now() - timedelta(hours=hours)
historical_metrics = []
for metrics in self.metrics_history:
if datetime.fromisoformat(metrics.timestamp) > cutoff_time:
historical_metrics.append(metrics)
return historical_metrics
def get_prediction_patterns(self, hours: int = 24) -> Dict[str, Any]:
"""Analyze prediction patterns for anomaly detection"""
cutoff_time = datetime.now() - timedelta(hours=hours)
recent_predictions = [
p for p in self.recent_predictions
if datetime.fromisoformat(p.timestamp) > cutoff_time
]
if not recent_predictions:
return {'error': 'No recent predictions found'}
# Analyze patterns
hourly_distribution = defaultdict(int)
confidence_trends = []
processing_time_trends = []
for prediction in recent_predictions:
hour = datetime.fromisoformat(prediction.timestamp).hour
hourly_distribution[hour] += 1
confidence_trends.append(prediction.confidence)
processing_time_trends.append(prediction.processing_time)
return {
'total_predictions': len(recent_predictions),
'hourly_distribution': dict(hourly_distribution),
'confidence_stats': {
'mean': float(np.mean(confidence_trends)),
'std': float(np.std(confidence_trends)),
'min': float(np.min(confidence_trends)),
'max': float(np.max(confidence_trends))
},
'processing_time_stats': {
'mean': float(np.mean(processing_time_trends)),
'std': float(np.std(processing_time_trends)),
'min': float(np.min(processing_time_trends)),
'max': float(np.max(processing_time_trends))
},
'anomaly_indicators': self._detect_anomaly_indicators(recent_predictions)
}
def get_current_error_rate(self) -> float:
"""Calculate current error rate"""
if self.total_predictions == 0:
return 0.0
return self.error_count / (self.total_predictions + self.error_count)
def get_confidence_analysis(self) -> Dict[str, Any]:
"""Analyze confidence distribution and trends"""
recent_predictions = self._get_recent_predictions(minutes=60)
if not recent_predictions:
return {'error': 'No recent predictions found'}
confidences = [p.confidence for p in recent_predictions]
# Confidence distribution
distribution = self._calculate_confidence_distribution(confidences)
# Confidence trends (last hour in 10-minute windows)
trends = []
now = datetime.now()
for i in range(6): # 6 ten-minute windows
window_start = now - timedelta(minutes=(i+1)*10)
window_end = now - timedelta(minutes=i*10)
window_predictions = [
p for p in recent_predictions
if window_start <= datetime.fromisoformat(p.timestamp) < window_end
]
if window_predictions:
avg_confidence = np.mean([p.confidence for p in window_predictions])
trends.append({
'window_start': window_start.isoformat(),
'window_end': window_end.isoformat(),
'avg_confidence': float(avg_confidence),
'prediction_count': len(window_predictions)
})
return {
'total_predictions': len(recent_predictions),
'overall_avg_confidence': float(np.mean(confidences)),
'confidence_std': float(np.std(confidences)),
'distribution': distribution,
'trends': trends[::-1], # Reverse to get chronological order
'low_confidence_alerts': len([c for c in confidences if c < self.confidence_thresholds['low']])
}
def _monitoring_loop(self):
"""Background monitoring loop"""
while self.monitoring_active:
try:
# Process any pending predictions
if self.prediction_buffer:
self._process_prediction_batch()
# Generate and save metrics
current_metrics = self.get_current_metrics()
self.metrics_history.append(current_metrics)
self._append_to_log(self.metrics_log_path, asdict(current_metrics))
# Check for alerts
self._check_performance_alerts(current_metrics)
# Sleep for 1 minute
time.sleep(60)
except Exception as e:
logger.error(f"Error in monitoring loop: {e}")
time.sleep(60)
def _process_prediction_batch(self):
"""Process batch of predictions and save to log"""
batch = list(self.prediction_buffer)
self.prediction_buffer.clear()
# Save batch to log file
for prediction in batch:
self._append_to_log(self.predictions_log_path, asdict(prediction))
def _get_recent_predictions(self, minutes: int) -> List[PredictionRecord]:
"""Get predictions from the last N minutes"""
cutoff_time = datetime.now() - timedelta(minutes=minutes)
return [
p for p in self.recent_predictions
if datetime.fromisoformat(p.timestamp) > cutoff_time
]
def _calculate_confidence_distribution(self, confidences: List[float]) -> Dict[str, int]:
"""Calculate confidence distribution buckets"""
distribution = {
'very_low': 0, # < 0.5
'low': 0, # 0.5-0.7
'medium': 0, # 0.7-0.8
'high': 0, # 0.8-0.9
'very_high': 0 # > 0.9
}
for confidence in confidences:
if confidence < 0.5:
distribution['very_low'] += 1
elif confidence < 0.7:
distribution['low'] += 1
elif confidence < 0.8:
distribution['medium'] += 1
elif confidence < 0.9:
distribution['high'] += 1
else:
distribution['very_high'] += 1
return distribution
def _calculate_prediction_distribution(self, predictions: List[str]) -> Dict[str, int]:
"""Calculate prediction label distribution"""
distribution = defaultdict(int)
for prediction in predictions:
distribution[prediction] += 1
return dict(distribution)
def _calculate_percentiles(self, values: List[float]) -> Dict[str, float]:
"""Calculate response time percentiles"""
if not values:
return {}
return {
'p50': float(np.percentile(values, 50)),
'p90': float(np.percentile(values, 90)),
'p95': float(np.percentile(values, 95)),
'p99': float(np.percentile(values, 99))
}
def _calculate_anomaly_score(self, predictions: List[PredictionRecord]) -> float:
"""Calculate anomaly score based on various factors"""
if not predictions:
return 0.0
scores = []
# Confidence anomaly (low confidence spike)
confidences = [p.confidence for p in predictions]
low_confidence_ratio = len([c for c in confidences if c < 0.6]) / len(confidences)
scores.append(low_confidence_ratio)
# Processing time anomaly (slow responses)
processing_times = [p.processing_time for p in predictions]
slow_response_ratio = len([t for t in processing_times if t > 5.0]) / len(processing_times)
scores.append(slow_response_ratio)
# Prediction distribution anomaly (extreme skew)
prediction_dist = self._calculate_prediction_distribution([p.prediction for p in predictions])
if prediction_dist:
max_ratio = max(prediction_dist.values()) / len(predictions)
if max_ratio > 0.9: # More than 90% same prediction
scores.append(0.5)
else:
scores.append(0.0)
return float(np.mean(scores))
def _detect_anomaly_indicators(self, predictions: List[PredictionRecord]) -> List[str]:
"""Detect specific anomaly indicators"""
indicators = []
if not predictions:
return indicators
# Low confidence spike
low_confidence_count = len([p for p in predictions if p.confidence < 0.6])
if low_confidence_count > len(predictions) * 0.3:
indicators.append(f"High low-confidence predictions: {low_confidence_count}/{len(predictions)}")
# Slow response spike
slow_responses = len([p for p in predictions if p.processing_time > 5.0])
if slow_responses > len(predictions) * 0.1:
indicators.append(f"Slow responses detected: {slow_responses}/{len(predictions)}")
# Prediction skew
prediction_dist = self._calculate_prediction_distribution([p.prediction for p in predictions])
if prediction_dist:
max_count = max(prediction_dist.values())
if max_count > len(predictions) * 0.9:
dominant_prediction = max(prediction_dist, key=prediction_dist.get)
indicators.append(f"Extreme prediction skew: {max_count}/{len(predictions)} are '{dominant_prediction}'")
return indicators
def _check_performance_alerts(self, metrics: MonitoringMetrics):
"""Check for performance-based alerts"""
alerts = []
# Response time alerts
if metrics.avg_processing_time > self.performance_thresholds['response_time_critical']:
alerts.append({
'type': 'critical',
'category': 'response_time',
'message': f"Critical response time: {metrics.avg_processing_time:.2f}s",
'threshold': self.performance_thresholds['response_time_critical']
})
elif metrics.avg_processing_time > self.performance_thresholds['response_time_warning']:
alerts.append({
'type': 'warning',
'category': 'response_time',
'message': f"High response time: {metrics.avg_processing_time:.2f}s",
'threshold': self.performance_thresholds['response_time_warning']
})
# Confidence alerts
if metrics.avg_confidence < self.performance_thresholds['confidence_warning']:
alerts.append({
'type': 'warning',
'category': 'confidence',
'message': f"Low average confidence: {metrics.avg_confidence:.2f}",
'threshold': self.performance_thresholds['confidence_warning']
})
# Error rate alerts
if metrics.error_rate > self.performance_thresholds['error_rate_critical']:
alerts.append({
'type': 'critical',
'category': 'error_rate',
'message': f"Critical error rate: {metrics.error_rate:.2%}",
'threshold': self.performance_thresholds['error_rate_critical']
})
elif metrics.error_rate > self.performance_thresholds['error_rate_warning']:
alerts.append({
'type': 'warning',
'category': 'error_rate',
'message': f"High error rate: {metrics.error_rate:.2%}",
'threshold': self.performance_thresholds['error_rate_warning']
})
# Anomaly alerts
if metrics.anomaly_score > 0.3:
alerts.append({
'type': 'warning',
'category': 'anomaly',
'message': f"Anomaly detected: score {metrics.anomaly_score:.2f}",
'threshold': 0.3
})
# Save alerts
for alert in alerts:
alert['timestamp'] = datetime.now().isoformat()
alert['metrics_snapshot'] = asdict(metrics)
self._append_to_log(self.alerts_log_path, alert)
def _check_error_rate_alerts(self):
"""Check error rate and generate alerts if needed"""
error_rate = self.get_current_error_rate()
if error_rate > self.performance_thresholds['error_rate_critical']:
alert = {
'timestamp': datetime.now().isoformat(),
'type': 'critical',
'category': 'error_rate',
'message': f"Critical error rate reached: {error_rate:.2%}",
'error_count': self.error_count,
'total_requests': self.total_predictions + self.error_count
}
self._append_to_log(self.alerts_log_path, alert)
def _hash_text(self, text: str) -> str:
"""Generate hash for text content"""
import hashlib
return hashlib.md5(text.encode()).hexdigest()[:16]
def _append_to_log(self, log_path: Path, data: Dict):
"""Append data to log file"""
try:
with open(log_path, 'a') as f:
f.write(json.dumps(data) + '\n')
except Exception as e:
logger.error(f"Failed to write to log {log_path}: {e}")
def load_historical_data(self):
"""Load historical data on startup"""
try:
# Load recent predictions
if self.predictions_log_path.exists():
with open(self.predictions_log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
prediction = PredictionRecord(**data)
# Only load recent predictions (last 24 hours)
if datetime.fromisoformat(prediction.timestamp) > datetime.now() - timedelta(hours=24):
self.recent_predictions.append(prediction)
except Exception:
continue
# Load recent metrics
if self.metrics_log_path.exists():
with open(self.metrics_log_path, 'r') as f:
for line in f:
try:
data = json.loads(line.strip())
metrics = MonitoringMetrics(**data)
# Only load recent metrics (last 24 hours)
if datetime.fromisoformat(metrics.timestamp) > datetime.now() - timedelta(hours=24):
self.metrics_history.append(metrics)
except Exception:
continue
logger.info(f"Loaded {len(self.recent_predictions)} recent predictions and {len(self.metrics_history)} metrics records")
except Exception as e:
logger.error(f"Failed to load historical data: {e}")