Fake-News-Detection-with-MLOps / utils /statistical_analysis.py
Ahmedik95316's picture
Create statistical_analysis.py
6b4cc07
# utils/statistical_analysis.py
# Advanced statistical analysis for Data Science grade enhancement (B+ → A-)
import numpy as np
import pandas as pd
from scipy import stats
from scipy.stats import bootstrap
import warnings
from typing import Dict, List, Tuple, Optional, Any, Union, Callable
from dataclasses import dataclass
from pathlib import Path
import json
from datetime import datetime
import logging
# Import structured logging if available
try:
from .structured_logger import StructuredLogger, EventType, MLOpsLoggers
STRUCTURED_LOGGING_AVAILABLE = True
except ImportError:
STRUCTURED_LOGGING_AVAILABLE = False
import logging
warnings.filterwarnings('ignore')
logger = logging.getLogger(__name__)
@dataclass
class StatisticalResult:
"""Container for statistical analysis results with uncertainty quantification"""
point_estimate: float
confidence_interval: Tuple[float, float]
confidence_level: float
method: str
sample_size: int
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.metadata is None:
self.metadata = {}
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for serialization"""
return {
'point_estimate': float(self.point_estimate),
'confidence_interval': [float(self.confidence_interval[0]), float(self.confidence_interval[1])],
'confidence_level': float(self.confidence_level),
'method': self.method,
'sample_size': int(self.sample_size),
'metadata': self.metadata,
'timestamp': datetime.now().isoformat()
}
def margin_of_error(self) -> float:
"""Calculate margin of error from confidence interval"""
return (self.confidence_interval[1] - self.confidence_interval[0]) / 2
def is_significant_improvement_over(self, baseline_value: float) -> bool:
"""Check if improvement over baseline is statistically significant"""
return self.confidence_interval[0] > baseline_value
class BootstrapAnalyzer:
"""Advanced bootstrap analysis for model performance uncertainty quantification"""
def __init__(self,
n_bootstrap: int = 1000,
confidence_level: float = 0.95,
random_state: int = 42):
self.n_bootstrap = n_bootstrap
self.confidence_level = confidence_level
self.random_state = random_state
self.rng = np.random.RandomState(random_state)
if STRUCTURED_LOGGING_AVAILABLE:
self.logger = MLOpsLoggers.get_logger('statistical_analysis')
else:
self.logger = logging.getLogger(__name__)
def bootstrap_metric(self,
y_true: np.ndarray,
y_pred: np.ndarray,
metric_func: Callable,
stratify: bool = True) -> StatisticalResult:
"""
Bootstrap confidence interval for any metric function
Args:
y_true: True labels
y_pred: Predicted labels or probabilities
metric_func: Function that takes (y_true, y_pred) and returns metric
stratify: Whether to use stratified bootstrap sampling
"""
n_samples = len(y_true)
bootstrap_scores = []
# Original metric value
original_score = metric_func(y_true, y_pred)
for i in range(self.n_bootstrap):
# Bootstrap sampling
if stratify:
# Stratified bootstrap to maintain class distribution
indices = self._stratified_bootstrap_indices(y_true)
else:
indices = self.rng.choice(n_samples, size=n_samples, replace=True)
# Calculate metric on bootstrap sample
try:
bootstrap_score = metric_func(y_true[indices], y_pred[indices])
bootstrap_scores.append(bootstrap_score)
except Exception as e:
# Skip invalid bootstrap samples
continue
bootstrap_scores = np.array(bootstrap_scores)
# Calculate confidence interval
alpha = 1 - self.confidence_level
lower_percentile = (alpha / 2) * 100
upper_percentile = (1 - alpha / 2) * 100
ci_lower = np.percentile(bootstrap_scores, lower_percentile)
ci_upper = np.percentile(bootstrap_scores, upper_percentile)
return StatisticalResult(
point_estimate=original_score,
confidence_interval=(ci_lower, ci_upper),
confidence_level=self.confidence_level,
method='bootstrap',
sample_size=n_samples,
metadata={
'n_bootstrap': self.n_bootstrap,
'bootstrap_mean': float(np.mean(bootstrap_scores)),
'bootstrap_std': float(np.std(bootstrap_scores)),
'stratified': stratify,
'valid_bootstraps': len(bootstrap_scores)
}
)
def _stratified_bootstrap_indices(self, y_true: np.ndarray) -> np.ndarray:
"""Generate stratified bootstrap indices maintaining class distribution"""
indices = []
unique_classes, class_counts = np.unique(y_true, return_counts=True)
for class_label, count in zip(unique_classes, class_counts):
class_indices = np.where(y_true == class_label)[0]
bootstrap_indices = self.rng.choice(class_indices, size=count, replace=True)
indices.extend(bootstrap_indices)
return np.array(indices)
def bootstrap_model_comparison(self,
y_true: np.ndarray,
y_pred_1: np.ndarray,
y_pred_2: np.ndarray,
metric_func: Callable,
model_1_name: str = "Model 1",
model_2_name: str = "Model 2") -> Dict[str, Any]:
"""
Bootstrap comparison between two models with statistical significance testing
"""
n_samples = len(y_true)
differences = []
# Calculate original difference
score_1 = metric_func(y_true, y_pred_1)
score_2 = metric_func(y_true, y_pred_2)
original_difference = score_2 - score_1
# Bootstrap sampling for difference
for i in range(self.n_bootstrap):
indices = self.rng.choice(n_samples, size=n_samples, replace=True)
try:
boot_score_1 = metric_func(y_true[indices], y_pred_1[indices])
boot_score_2 = metric_func(y_true[indices], y_pred_2[indices])
differences.append(boot_score_2 - boot_score_1)
except:
continue
differences = np.array(differences)
# Calculate confidence interval for difference
alpha = 1 - self.confidence_level
ci_lower = np.percentile(differences, (alpha / 2) * 100)
ci_upper = np.percentile(differences, (1 - alpha / 2) * 100)
# Statistical significance test
p_value_bootstrap = np.mean(differences <= 0) * 2 # Two-tailed test
is_significant = ci_lower > 0 or ci_upper < 0
# Effect size (Cohen's d)
pooled_std = np.sqrt((np.var(differences)) / 2)
cohens_d = original_difference / pooled_std if pooled_std > 0 else 0
return {
'model_1_name': model_1_name,
'model_2_name': model_2_name,
'model_1_score': StatisticalResult(
point_estimate=score_1,
confidence_interval=(score_1 - np.std(differences), score_1 + np.std(differences)),
confidence_level=self.confidence_level,
method='bootstrap_individual',
sample_size=n_samples
).to_dict(),
'model_2_score': StatisticalResult(
point_estimate=score_2,
confidence_interval=(score_2 - np.std(differences), score_2 + np.std(differences)),
confidence_level=self.confidence_level,
method='bootstrap_individual',
sample_size=n_samples
).to_dict(),
'difference': StatisticalResult(
point_estimate=original_difference,
confidence_interval=(ci_lower, ci_upper),
confidence_level=self.confidence_level,
method='bootstrap_difference',
sample_size=n_samples,
metadata={
'p_value_bootstrap': float(p_value_bootstrap),
'is_significant': bool(is_significant),
'effect_size_cohens_d': float(cohens_d),
'bootstrap_mean_difference': float(np.mean(differences)),
'bootstrap_std_difference': float(np.std(differences))
}
).to_dict()
}
class FeatureImportanceAnalyzer:
"""Advanced feature importance analysis with uncertainty quantification"""
def __init__(self,
n_bootstrap: int = 500,
confidence_level: float = 0.95,
random_state: int = 42):
self.n_bootstrap = n_bootstrap
self.confidence_level = confidence_level
self.random_state = random_state
self.rng = np.random.RandomState(random_state)
if STRUCTURED_LOGGING_AVAILABLE:
self.logger = MLOpsLoggers.get_logger('feature_importance')
else:
self.logger = logging.getLogger(__name__)
def analyze_importance_stability(self,
model,
X: np.ndarray,
y: np.ndarray,
feature_names: List[str] = None) -> Dict[str, Any]:
"""
Analyze feature importance stability using bootstrap sampling
"""
if feature_names is None:
feature_names = [f'feature_{i}' for i in range(X.shape[1])]
importance_samples = []
# Bootstrap sampling for importance stability
for i in range(self.n_bootstrap):
# Bootstrap sample
indices = self.rng.choice(len(X), size=len(X), replace=True)
X_boot = X[indices]
y_boot = y[indices]
try:
# Fit model on bootstrap sample
model_copy = self._clone_model(model)
model_copy.fit(X_boot, y_boot)
# Extract feature importances
if hasattr(model_copy, 'feature_importances_'):
importances = model_copy.feature_importances_
elif hasattr(model_copy, 'coef_'):
importances = np.abs(model_copy.coef_).flatten()
else:
# Use permutation importance as fallback
from sklearn.inspection import permutation_importance
perm_importance = permutation_importance(model_copy, X_boot, y_boot, n_repeats=5, random_state=self.random_state)
importances = perm_importance.importances_mean
importance_samples.append(importances)
except Exception as e:
continue
importance_samples = np.array(importance_samples)
# Calculate statistics for each feature
feature_stats = {}
for i, feature_name in enumerate(feature_names):
if i < importance_samples.shape[1]:
feature_importances = importance_samples[:, i]
# Calculate confidence interval
alpha = 1 - self.confidence_level
ci_lower = np.percentile(feature_importances, (alpha / 2) * 100)
ci_upper = np.percentile(feature_importances, (1 - alpha / 2) * 100)
# Stability metrics
cv_importance = np.std(feature_importances) / np.mean(feature_importances) if np.mean(feature_importances) > 0 else np.inf
feature_stats[feature_name] = StatisticalResult(
point_estimate=float(np.mean(feature_importances)),
confidence_interval=(float(ci_lower), float(ci_upper)),
confidence_level=self.confidence_level,
method='bootstrap_importance',
sample_size=len(importance_samples),
metadata={
'coefficient_of_variation': float(cv_importance),
'std_importance': float(np.std(feature_importances)),
'min_importance': float(np.min(feature_importances)),
'max_importance': float(np.max(feature_importances)),
'stability_rank': None # Will be filled later
}
).to_dict()
# Rank features by stability (lower CV = more stable)
sorted_features = sorted(
feature_stats.items(),
key=lambda x: x[1]['metadata']['coefficient_of_variation']
)
for rank, (feature_name, stats) in enumerate(sorted_features):
feature_stats[feature_name]['metadata']['stability_rank'] = rank + 1
return {
'feature_importance_analysis': feature_stats,
'stability_ranking': [name for name, _ in sorted_features],
'analysis_metadata': {
'n_bootstrap_samples': self.n_bootstrap,
'confidence_level': self.confidence_level,
'n_features_analyzed': len(feature_names),
'valid_bootstrap_runs': len(importance_samples)
}
}
def _clone_model(self, model):
"""Clone model for bootstrap sampling"""
from sklearn.base import clone
try:
return clone(model)
except:
# Fallback: create new instance with same parameters
return type(model)(**model.get_params())
def permutation_importance_with_ci(self,
model,
X: np.ndarray,
y: np.ndarray,
scoring_func: Callable,
feature_names: List[str] = None,
n_repeats: int = 10) -> Dict[str, Any]:
"""
Calculate permutation importance with confidence intervals
"""
if feature_names is None:
feature_names = [f'feature_{i}' for i in range(X.shape[1])]
# Baseline score
baseline_score = scoring_func(model, X, y)
feature_importance_scores = {}
for feature_idx, feature_name in enumerate(feature_names):
importance_scores = []
# Multiple permutation rounds for each feature
for _ in range(n_repeats):
# Permute feature
X_permuted = X.copy()
X_permuted[:, feature_idx] = self.rng.permutation(X_permuted[:, feature_idx])
# Calculate score with permuted feature
permuted_score = scoring_func(model, X_permuted, y)
importance = baseline_score - permuted_score
importance_scores.append(importance)
# Calculate statistics
importance_scores = np.array(importance_scores)
alpha = 1 - self.confidence_level
ci_lower = np.percentile(importance_scores, (alpha / 2) * 100)
ci_upper = np.percentile(importance_scores, (1 - alpha / 2) * 100)
feature_importance_scores[feature_name] = StatisticalResult(
point_estimate=float(np.mean(importance_scores)),
confidence_interval=(float(ci_lower), float(ci_upper)),
confidence_level=self.confidence_level,
method='permutation_importance',
sample_size=n_repeats,
metadata={
'baseline_score': float(baseline_score),
'std_importance': float(np.std(importance_scores)),
'is_statistically_important': float(ci_lower) > 0
}
).to_dict()
return {
'permutation_importance': feature_importance_scores,
'baseline_score': float(baseline_score),
'analysis_metadata': {
'n_repeats': n_repeats,
'confidence_level': self.confidence_level,
'scoring_function': scoring_func.__name__ if hasattr(scoring_func, '__name__') else 'custom'
}
}
class AdvancedCrossValidation:
"""Advanced cross-validation with comprehensive statistical reporting"""
def __init__(self,
cv_folds: int = 5,
n_bootstrap: int = 200,
confidence_level: float = 0.95,
random_state: int = 42):
self.cv_folds = cv_folds
self.n_bootstrap = n_bootstrap
self.confidence_level = confidence_level
self.random_state = random_state
self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
if STRUCTURED_LOGGING_AVAILABLE:
self.logger = MLOpsLoggers.get_logger('cross_validation')
else:
self.logger = logging.getLogger(__name__)
def comprehensive_cv_analysis(self,
model,
X: np.ndarray,
y: np.ndarray,
scoring_metrics: Dict[str, Callable]) -> Dict[str, Any]:
"""
Comprehensive cross-validation analysis with statistical significance testing
"""
from sklearn.model_selection import cross_validate, StratifiedKFold
# Setup CV strategy
cv_strategy = StratifiedKFold(
n_splits=self.cv_folds,
shuffle=True,
random_state=self.random_state
)
# Perform cross-validation
cv_results = cross_validate(
model, X, y,
cv=cv_strategy,
scoring=scoring_metrics,
return_train_score=True,
return_indices=True,
n_jobs=1
)
analysis_results = {
'cv_folds': self.cv_folds,
'metrics_analysis': {},
'fold_analysis': [],
'statistical_tests': {},
'confidence_intervals': {}
}
# Analyze each metric
for metric_name, metric_func in scoring_metrics.items():
test_scores = cv_results[f'test_{metric_name}']
train_scores = cv_results[f'train_{metric_name}']
# Bootstrap confidence intervals for CV scores
test_ci = self._bootstrap_cv_scores(test_scores)
train_ci = self._bootstrap_cv_scores(train_scores)
# Statistical tests
statistical_tests = self._perform_cv_statistical_tests(test_scores, train_scores)
analysis_results['metrics_analysis'][metric_name] = {
'test_scores': {
'mean': float(np.mean(test_scores)),
'std': float(np.std(test_scores)),
'confidence_interval': test_ci,
'scores': test_scores.tolist()
},
'train_scores': {
'mean': float(np.mean(train_scores)),
'std': float(np.std(train_scores)),
'confidence_interval': train_ci,
'scores': train_scores.tolist()
},
'overfitting_analysis': {
'overfitting_score': float(np.mean(train_scores) - np.mean(test_scores)),
'overfitting_ci': self._calculate_overfitting_ci(train_scores, test_scores)
},
'statistical_tests': statistical_tests
}
# Fold-by-fold analysis
for fold_idx in range(self.cv_folds):
fold_analysis = {
'fold': fold_idx + 1,
'metrics': {}
}
for metric_name in scoring_metrics.keys():
fold_analysis['metrics'][metric_name] = {
'test_score': float(cv_results[f'test_{metric_name}'][fold_idx]),
'train_score': float(cv_results[f'train_{metric_name}'][fold_idx])
}
analysis_results['fold_analysis'].append(fold_analysis)
return analysis_results
def _bootstrap_cv_scores(self, scores: np.ndarray) -> Dict[str, float]:
"""Bootstrap confidence interval for CV scores"""
bootstrap_means = []
for _ in range(self.n_bootstrap):
bootstrap_sample = np.random.choice(scores, size=len(scores), replace=True)
bootstrap_means.append(np.mean(bootstrap_sample))
alpha = 1 - self.confidence_level
ci_lower = np.percentile(bootstrap_means, (alpha / 2) * 100)
ci_upper = np.percentile(bootstrap_means, (1 - alpha / 2) * 100)
return {
'lower': float(ci_lower),
'upper': float(ci_upper),
'confidence_level': self.confidence_level
}
def _perform_cv_statistical_tests(self, test_scores: np.ndarray, train_scores: np.ndarray) -> Dict[str, Any]:
"""Perform statistical tests on CV results"""
tests = {}
# Test for overfitting using paired t-test
try:
t_stat, p_value = stats.ttest_rel(train_scores, test_scores)
tests['overfitting_ttest'] = {
't_statistic': float(t_stat),
'p_value': float(p_value),
'significant_overfitting': p_value < 0.05 and t_stat > 0,
'interpretation': 'Significant overfitting detected' if (p_value < 0.05 and t_stat > 0) else 'No significant overfitting'
}
except Exception as e:
tests['overfitting_ttest'] = {'error': str(e)}
# Normality test for CV scores
try:
shapiro_stat, shapiro_p = stats.shapiro(test_scores)
tests['normality_test'] = {
'shapiro_statistic': float(shapiro_stat),
'p_value': float(shapiro_p),
'normally_distributed': shapiro_p > 0.05,
'interpretation': 'CV scores are normally distributed' if shapiro_p > 0.05 else 'CV scores are not normally distributed'
}
except Exception as e:
tests['normality_test'] = {'error': str(e)}
# Stability test (coefficient of variation)
cv_coefficient = np.std(test_scores) / np.mean(test_scores) if np.mean(test_scores) > 0 else np.inf
tests['stability_analysis'] = {
'coefficient_of_variation': float(cv_coefficient),
'stability_interpretation': self._interpret_stability(cv_coefficient)
}
return tests
def _calculate_overfitting_ci(self, train_scores: np.ndarray, test_scores: np.ndarray) -> Dict[str, float]:
"""Calculate confidence interval for overfitting metric"""
overfitting_differences = train_scores - test_scores
bootstrap_diffs = []
for _ in range(self.n_bootstrap):
indices = np.random.choice(len(overfitting_differences), size=len(overfitting_differences), replace=True)
bootstrap_diffs.append(np.mean(overfitting_differences[indices]))
alpha = 1 - self.confidence_level
ci_lower = np.percentile(bootstrap_diffs, (alpha / 2) * 100)
ci_upper = np.percentile(bootstrap_diffs, (1 - alpha / 2) * 100)
return {
'lower': float(ci_lower),
'upper': float(ci_upper),
'confidence_level': self.confidence_level
}
def _interpret_stability(self, cv_coefficient: float) -> str:
"""Interpret CV stability based on coefficient of variation"""
if cv_coefficient < 0.1:
return "Very stable performance across folds"
elif cv_coefficient < 0.2:
return "Stable performance across folds"
elif cv_coefficient < 0.3:
return "Moderately stable performance across folds"
else:
return "Unstable performance across folds - consider data quality or model complexity"
class StatisticalModelComparison:
"""Advanced statistical comparison between models with comprehensive uncertainty analysis"""
def __init__(self,
confidence_level: float = 0.95,
n_bootstrap: int = 1000,
random_state: int = 42):
self.confidence_level = confidence_level
self.n_bootstrap = n_bootstrap
self.random_state = random_state
self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
if STRUCTURED_LOGGING_AVAILABLE:
self.logger = MLOpsLoggers.get_logger('model_comparison')
else:
self.logger = logging.getLogger(__name__)
def comprehensive_model_comparison(self,
models: Dict[str, Any],
X: np.ndarray,
y: np.ndarray,
metrics: Dict[str, Callable],
cv_folds: int = 5) -> Dict[str, Any]:
"""
Comprehensive pairwise model comparison with statistical significance testing
"""
from sklearn.model_selection import cross_val_predict, StratifiedKFold
cv_strategy = StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=self.random_state)
# Get CV predictions for each model
model_predictions = {}
model_cv_scores = {}
for model_name, model in models.items():
# Cross-validation predictions
cv_pred = cross_val_predict(model, X, y, cv=cv_strategy, method='predict_proba')
if cv_pred.ndim == 2 and cv_pred.shape[1] == 2:
cv_pred = cv_pred[:, 1] # Binary classification probabilities
model_predictions[model_name] = cv_pred
# Calculate CV scores for each metric
model_cv_scores[model_name] = {}
for metric_name, metric_func in metrics.items():
try:
if 'roc_auc' in metric_name.lower():
scores = [metric_func(y[test], cv_pred[test]) for train, test in cv_strategy.split(X, y)]
else:
pred_labels = (cv_pred > 0.5).astype(int)
scores = [metric_func(y[test], pred_labels[test]) for train, test in cv_strategy.split(X, y)]
model_cv_scores[model_name][metric_name] = np.array(scores)
except Exception as e:
self.logger.warning(f"Failed to calculate {metric_name} for {model_name}: {e}")
# Pairwise comparisons
comparison_results = {}
model_names = list(models.keys())
for i, model1_name in enumerate(model_names):
for j, model2_name in enumerate(model_names[i+1:], i+1):
comparison_key = f"{model1_name}_vs_{model2_name}"
comparison_results[comparison_key] = self._pairwise_comparison(
model1_name, model2_name,
model_cv_scores[model1_name],
model_cv_scores[model2_name],
model_predictions[model1_name],
model_predictions[model2_name],
y, metrics
)
# Overall ranking
ranking = self._rank_models(model_cv_scores, primary_metric='f1')
return {
'individual_model_results': model_cv_scores,
'pairwise_comparisons': comparison_results,
'model_ranking': ranking,
'analysis_metadata': {
'cv_folds': cv_folds,
'confidence_level': self.confidence_level,
'n_bootstrap': self.n_bootstrap,
'models_compared': len(models),
'metrics_evaluated': list(metrics.keys())
}
}
def _pairwise_comparison(self,
model1_name: str, model2_name: str,
scores1: Dict[str, np.ndarray],
scores2: Dict[str, np.ndarray],
pred1: np.ndarray, pred2: np.ndarray,
y_true: np.ndarray,
metrics: Dict[str, Callable]) -> Dict[str, Any]:
"""Detailed pairwise comparison between two models"""
comparison = {
'models': [model1_name, model2_name],
'metric_comparisons': {},
'overall_comparison': {}
}
significant_improvements = 0
total_comparisons = 0
# Compare each metric
for metric_name in scores1.keys():
if metric_name in scores2:
metric_comparison = self._compare_metric_scores(
scores1[metric_name], scores2[metric_name], metric_name
)
comparison['metric_comparisons'][metric_name] = metric_comparison
if metric_comparison['statistical_tests']['significant_improvement']:
significant_improvements += 1
total_comparisons += 1
# Bootstrap comparison of predictions
if len(pred1) == len(pred2) == len(y_true):
bootstrap_comparison = self._bootstrap_prediction_comparison(
y_true, pred1, pred2, metrics
)
comparison['bootstrap_prediction_comparison'] = bootstrap_comparison
# Overall decision
improvement_rate = significant_improvements / total_comparisons if total_comparisons > 0 else 0
comparison['overall_comparison'] = {
'significant_improvements': significant_improvements,
'total_comparisons': total_comparisons,
'improvement_rate': float(improvement_rate),
'recommendation': self._make_comparison_recommendation(improvement_rate, significant_improvements)
}
return comparison
def _compare_metric_scores(self, scores1: np.ndarray, scores2: np.ndarray, metric_name: str) -> Dict[str, Any]:
"""Statistical comparison of metric scores between two models"""
# Basic statistics
mean1, mean2 = np.mean(scores1), np.mean(scores2)
std1, std2 = np.std(scores1), np.std(scores2)
improvement = mean2 - mean1
# Statistical tests
statistical_tests = {}
# Paired t-test
try:
t_stat, p_value = stats.ttest_rel(scores2, scores1)
statistical_tests['paired_ttest'] = {
't_statistic': float(t_stat),
'p_value': float(p_value),
'significant': p_value < 0.05,
'effect_direction': 'improvement' if t_stat > 0 else 'degradation'
}
except Exception as e:
statistical_tests['paired_ttest'] = {'error': str(e)}
# Wilcoxon signed-rank test (non-parametric)
try:
w_stat, w_p = stats.wilcoxon(scores2, scores1, alternative='two-sided')
statistical_tests['wilcoxon'] = {
'statistic': float(w_stat),
'p_value': float(w_p),
'significant': w_p < 0.05
}
except Exception as e:
statistical_tests['wilcoxon'] = {'error': str(e)}
# Bootstrap confidence interval for difference
bootstrap_diffs = []
for _ in range(200): # Reduced for performance
indices = np.random.choice(len(scores1), size=len(scores1), replace=True)
diff = np.mean(scores2[indices]) - np.mean(scores1[indices])
bootstrap_diffs.append(diff)
alpha = 1 - self.confidence_level
ci_lower = np.percentile(bootstrap_diffs, (alpha / 2) * 100)
ci_upper = np.percentile(bootstrap_diffs, (1 - alpha / 2) * 100)
# Effect size (Cohen's d)
pooled_std = np.sqrt((std1**2 + std2**2) / 2)
cohens_d = improvement / pooled_std if pooled_std > 0 else 0
return {
'metric_name': metric_name,
'mean_scores': {'model1': float(mean1), 'model2': float(mean2)},
'improvement': float(improvement),
'relative_improvement_percent': float((improvement / mean1) * 100) if mean1 > 0 else 0,
'confidence_interval': {'lower': float(ci_lower), 'upper': float(ci_upper)},
'effect_size_cohens_d': float(cohens_d),
'statistical_tests': statistical_tests,
'significant_improvement': improvement > 0 and ci_lower > 0,
'interpretation': self._interpret_effect_size(cohens_d)
}
def _bootstrap_prediction_comparison(self, y_true: np.ndarray, pred1: np.ndarray, pred2: np.ndarray, metrics: Dict[str, Callable]) -> Dict[str, Any]:
"""Bootstrap comparison of model predictions"""
bootstrap_results = {}
for metric_name, metric_func in metrics.items():
try:
# For probabilistic metrics, use probabilities directly
if 'roc_auc' in metric_name.lower():
comparison = self.bootstrap_analyzer.bootstrap_model_comparison(
y_true, pred1, pred2, metric_func, "Model1", "Model2"
)
else:
# For classification metrics, convert to class predictions
pred1_class = (pred1 > 0.5).astype(int)
pred2_class = (pred2 > 0.5).astype(int)
comparison = self.bootstrap_analyzer.bootstrap_model_comparison(
y_true, pred1_class, pred2_class, metric_func, "Model1", "Model2"
)
bootstrap_results[metric_name] = comparison
except Exception as e:
bootstrap_results[metric_name] = {'error': str(e)}
return bootstrap_results
def _interpret_effect_size(self, cohens_d: float) -> str:
"""Interpret Cohen's d effect size"""
abs_d = abs(cohens_d)
if abs_d < 0.2:
return "Negligible effect"
elif abs_d < 0.5:
return "Small effect"
elif abs_d < 0.8:
return "Medium effect"
else:
return "Large effect"
def _make_comparison_recommendation(self, improvement_rate: float, significant_improvements: int) -> str:
"""Make recommendation based on comparison results"""
if improvement_rate >= 0.75 and significant_improvements >= 2:
return "Strong recommendation for model upgrade"
elif improvement_rate >= 0.5 and significant_improvements >= 1:
return "Moderate recommendation for model upgrade"
elif improvement_rate > 0:
return "Weak recommendation for model upgrade - consider other factors"
else:
return "No recommendation for model upgrade"
def _rank_models(self, model_cv_scores: Dict[str, Dict[str, np.ndarray]], primary_metric: str = 'f1') -> Dict[str, Any]:
"""Rank models based on CV performance with statistical significance"""
# Calculate mean scores for primary metric
model_means = {}
for model_name, scores in model_cv_scores.items():
if primary_metric in scores:
model_means[model_name] = np.mean(scores[primary_metric])
# Sort by mean performance
sorted_models = sorted(model_means.items(), key=lambda x: x[1], reverse=True)
# Statistical significance testing for ranking
ranking_with_significance = []
for i, (model_name, mean_score) in enumerate(sorted_models):
rank_info = {
'rank': i + 1,
'model_name': model_name,
'mean_score': float(mean_score),
'significantly_better_than': []
}
# Compare with lower-ranked models
for j, (other_model, other_score) in enumerate(sorted_models[i+1:], i+1):
try:
t_stat, p_value = stats.ttest_rel(
model_cv_scores[model_name][primary_metric],
model_cv_scores[other_model][primary_metric]
)
if p_value < 0.05 and t_stat > 0:
rank_info['significantly_better_than'].append({
'model': other_model,
'p_value': float(p_value),
'rank': j + 1
})
except Exception:
continue
ranking_with_significance.append(rank_info)
return {
'ranking': ranking_with_significance,
'primary_metric': primary_metric,
'ranking_method': 'mean_cv_score_with_significance_testing'
}
# Integration utilities for existing codebase
class MLOpsStatisticalAnalyzer:
"""Comprehensive statistical analyzer for MLOps pipeline"""
def __init__(self,
confidence_level: float = 0.95,
n_bootstrap: int = 1000,
random_state: int = 42):
self.confidence_level = confidence_level
self.n_bootstrap = n_bootstrap
self.random_state = random_state
# Initialize analyzers
self.bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap, confidence_level, random_state)
self.feature_analyzer = FeatureImportanceAnalyzer(n_bootstrap, confidence_level, random_state)
self.cv_analyzer = AdvancedCrossValidation(5, n_bootstrap, confidence_level, random_state)
self.comparison_analyzer = StatisticalModelComparison(confidence_level, n_bootstrap, random_state)
if STRUCTURED_LOGGING_AVAILABLE:
self.logger = MLOpsLoggers.get_logger('statistical_analyzer')
else:
self.logger = logging.getLogger(__name__)
def comprehensive_model_analysis(self,
models: Dict[str, Any],
X_train: np.ndarray,
X_test: np.ndarray,
y_train: np.ndarray,
y_test: np.ndarray,
feature_names: List[str] = None) -> Dict[str, Any]:
"""
Perform comprehensive statistical analysis of models including:
- Bootstrap confidence intervals for performance metrics
- Feature importance stability analysis
- Advanced cross-validation with statistical testing
- Pairwise model comparisons with significance testing
"""
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score
# Define metrics
def accuracy_func(y_true, y_pred): return accuracy_score(y_true, y_pred)
def f1_func(y_true, y_pred): return f1_score(y_true, y_pred, average='weighted')
def precision_func(y_true, y_pred): return precision_score(y_true, y_pred, average='weighted')
def recall_func(y_true, y_pred): return recall_score(y_true, y_pred, average='weighted')
def roc_auc_func(y_true, y_pred_proba): return roc_auc_score(y_true, y_pred_proba)
metrics = {
'accuracy': accuracy_func,
'f1': f1_func,
'precision': precision_func,
'recall': recall_func,
'roc_auc': roc_auc_func
}
analysis_results = {
'analysis_timestamp': datetime.now().isoformat(),
'configuration': {
'confidence_level': self.confidence_level,
'n_bootstrap': self.n_bootstrap,
'models_analyzed': list(models.keys())
},
'individual_model_analysis': {},
'comparative_analysis': {},
'feature_importance_analysis': {},
'recommendations': []
}
# Individual model analysis
for model_name, model in models.items():
try:
# Fit model
model.fit(X_train, y_train)
# Get predictions
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba') else y_pred
# Bootstrap analysis for each metric
bootstrap_results = {}
for metric_name, metric_func in metrics.items():
if metric_name == 'roc_auc':
result = self.bootstrap_analyzer.bootstrap_metric(
y_test, y_pred_proba, metric_func
)
else:
result = self.bootstrap_analyzer.bootstrap_metric(
y_test, y_pred, metric_func
)
bootstrap_results[metric_name] = result.to_dict()
# Cross-validation analysis
cv_analysis = self.cv_analyzer.comprehensive_cv_analysis(
model, X_train, y_train, metrics
)
# Feature importance analysis (if supported)
feature_analysis = {}
if hasattr(model, 'feature_importances_') or hasattr(model, 'coef_'):
try:
feature_analysis = self.feature_analyzer.analyze_importance_stability(
model, X_train, y_train, feature_names
)
except Exception as e:
feature_analysis = {'error': str(e)}
analysis_results['individual_model_analysis'][model_name] = {
'bootstrap_metrics': bootstrap_results,
'cross_validation_analysis': cv_analysis,
'feature_importance_analysis': feature_analysis
}
except Exception as e:
self.logger.error(f"Analysis failed for model {model_name}: {e}")
analysis_results['individual_model_analysis'][model_name] = {'error': str(e)}
# Comparative analysis
if len(models) > 1:
try:
comparative_results = self.comparison_analyzer.comprehensive_model_comparison(
models, X_train, y_train, metrics
)
analysis_results['comparative_analysis'] = comparative_results
# Generate recommendations based on comparison
recommendations = self._generate_analysis_recommendations(comparative_results)
analysis_results['recommendations'].extend(recommendations)
except Exception as e:
analysis_results['comparative_analysis'] = {'error': str(e)}
return analysis_results
def _generate_analysis_recommendations(self, comparative_results: Dict[str, Any]) -> List[Dict[str, str]]:
"""Generate actionable recommendations based on statistical analysis"""
recommendations = []
# Model ranking recommendations
if 'model_ranking' in comparative_results:
ranking = comparative_results['model_ranking']['ranking']
if len(ranking) > 0:
best_model = ranking[0]
significantly_better_count = len(best_model.get('significantly_better_than', []))
if significantly_better_count > 0:
recommendations.append({
'type': 'model_selection',
'priority': 'high',
'message': f"Model '{best_model['model_name']}' shows statistically significant improvement over {significantly_better_count} other model(s)",
'action': f"Consider promoting {best_model['model_name']} to production"
})
# Feature importance recommendations
for model_name, analysis in comparative_results.get('individual_model_analysis', {}).items():
feature_analysis = analysis.get('feature_importance_analysis', {})
if 'stability_ranking' in feature_analysis:
unstable_features = [
name for name, stats in feature_analysis['feature_importance_analysis'].items()
if stats['metadata']['coefficient_of_variation'] > 0.5
]
if unstable_features:
recommendations.append({
'type': 'feature_engineering',
'priority': 'medium',
'message': f"Model '{model_name}' has {len(unstable_features)} unstable features with high variance",
'action': "Review feature engineering process and consider feature selection"
})
# Cross-validation recommendations
for model_name, analysis in comparative_results.get('individual_model_analysis', {}).items():
cv_analysis = analysis.get('cross_validation_analysis', {})
for metric_name, metric_analysis in cv_analysis.get('metrics_analysis', {}).items():
overfitting_analysis = metric_analysis.get('overfitting_analysis', {})
if overfitting_analysis.get('overfitting_score', 0) > 0.1: # 10% overfitting threshold
recommendations.append({
'type': 'model_complexity',
'priority': 'medium',
'message': f"Model '{model_name}' shows significant overfitting in {metric_name}",
'action': "Consider regularization or reducing model complexity"
})
return recommendations
def save_analysis_report(self, analysis_results: Dict[str, Any], file_path: Path = None):
"""Save comprehensive analysis report"""
if file_path is None:
file_path = Path("/tmp/logs/statistical_analysis_report.json")
file_path.parent.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w') as f:
json.dump(analysis_results, f, indent=2, default=str)
self.logger.info(f"Statistical analysis report saved to {file_path}")
return file_path
# Integration functions for existing codebase
def integrate_statistical_analysis_with_retrain():
"""Integration example for retrain.py"""
analyzer = MLOpsStatisticalAnalyzer()
# Example usage in retraining context
def enhanced_model_comparison(models_dict, X_train, X_test, y_train, y_test):
"""Enhanced model comparison with comprehensive statistical analysis"""
analysis_results = analyzer.comprehensive_model_analysis(
models_dict, X_train, X_test, y_train, y_test
)
# Extract promotion decision based on statistical significance
comparative_analysis = analysis_results.get('comparative_analysis', {})
ranking = comparative_analysis.get('model_ranking', {}).get('ranking', [])
if ranking:
best_model = ranking[0]
promotion_confidence = len(best_model.get('significantly_better_than', [])) / (len(ranking) - 1) if len(ranking) > 1 else 1.0
return {
'recommended_model': best_model['model_name'],
'statistical_confidence': promotion_confidence,
'analysis_results': analysis_results,
'promote_candidate': promotion_confidence > 0.5
}
return {'error': 'No valid model ranking available'}
return enhanced_model_comparison
def integrate_statistical_analysis_with_train():
"""Integration example for train.py"""
analyzer = MLOpsStatisticalAnalyzer()
def enhanced_ensemble_validation(individual_models, ensemble_model, X, y):
"""Enhanced ensemble validation with bootstrap confidence intervals"""
models_to_compare = {**individual_models, 'ensemble': ensemble_model}
# Perform comprehensive statistical analysis
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
analysis_results = analyzer.comprehensive_model_analysis(
models_to_compare, X_train, X_test, y_train, y_test
)
# Check if ensemble is statistically significantly better
comparative_analysis = analysis_results.get('comparative_analysis', {})
ensemble_comparisons = {
k: v for k, v in comparative_analysis.get('pairwise_comparisons', {}).items()
if 'ensemble' in k
}
significant_improvements = 0
total_comparisons = len(ensemble_comparisons)
for comparison in ensemble_comparisons.values():
if comparison.get('overall_comparison', {}).get('improvement_rate', 0) > 0.5:
significant_improvements += 1
ensemble_confidence = significant_improvements / total_comparisons if total_comparisons > 0 else 0
return {
'use_ensemble': ensemble_confidence > 0.5,
'ensemble_confidence': ensemble_confidence,
'statistical_analysis': analysis_results
}
return enhanced_ensemble_validation
if __name__ == "__main__":
# Example usage and testing
print("Testing advanced statistical analysis system...")
# Generate sample data for testing
np.random.seed(42)
X = np.random.randn(200, 10)
y = (X[:, 0] + X[:, 1] + np.random.randn(200) * 0.1 > 0).astype(int)
# Create sample models
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
models = {
'logistic_regression': LogisticRegression(random_state=42),
'random_forest': RandomForestClassifier(n_estimators=50, random_state=42)
}
# Test comprehensive analysis
analyzer = MLOpsStatisticalAnalyzer(n_bootstrap=100) # Reduced for testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
print("Running comprehensive statistical analysis...")
results = analyzer.comprehensive_model_analysis(
models, X_train, X_test, y_train, y_test
)
print(f"Analysis completed for {len(models)} models")
print(f"Generated {len(results['recommendations'])} recommendations")
# Test bootstrap analysis
bootstrap_analyzer = BootstrapAnalyzer(n_bootstrap=100)
from sklearn.metrics import f1_score
def f1_metric(y_true, y_pred):
return f1_score(y_true, y_pred, average='weighted')
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
bootstrap_result = bootstrap_analyzer.bootstrap_metric(y_test, y_pred, f1_metric)
print(f"Bootstrap F1 confidence interval: {bootstrap_result.confidence_interval}")
print("Advanced statistical analysis system test completed successfully!")