Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,314 Bytes
fa5a76b 8bcba46 fa5a76b f1b167c 5fde8e8 86e42cb fa5a76b a124ea8 86e42cb fa5a76b 565ff6c cee381b 714ba62 1fca2c4 d1c7fd2 78092b2 d1c7fd2 fa5a76b 9b08a1e 0f2fb25 df56a3f f94e336 df56a3f f94e336 dfe7bb1 9b08a1e 364cc78 db946fa a124ea8 8bcba46 678d7db fa5a76b 450efa9 fa5a76b 450efa9 fa5a76b 450efa9 fa5a76b 714ba62 fa5a76b 678d7db fa5a76b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
from os import path
from torchvision import transforms
from dataclasses import dataclass
from io import BytesIO
import math
from typing import Callable
import spaces
import diffusers
import transformers
from transformers import Qwen3ForCausalLM
from diffusers import ZImagePipeline, DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.models import AutoencoderKL as DiffusersAutoencoderKL
#from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer
#from diffusers.models.transformers import FluxTransformer2DModel
import copy
import random
import time
import safetensors.torch
from tqdm import tqdm
from safetensors.torch import load_file
from huggingface_hub import HfFileSystem, ModelCard
from huggingface_hub import login, hf_hub_download
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
#torch.set_float32_matmul_precision("medium")
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
#dtype = torch.bfloat16
#base_model = "AlekseyCalvin/Artsy_Lite_Flux_v1_by_jurdn_Diffusers"
#pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda")
#pipe = diffusers.ZImagePipeline.from_pretrained("Disty0/Z-Image-Turbo-SDNQ-uint4-svd-r32", torch_dtype=torch.bfloat16)
#torch.cuda.empty_cache()
#pipe = diffusers.ZImagePipeline.from_pretrained("dimitribarbot/Z-Image-Turbo-BF16", torch_dtype=torch.bfloat16)
#pipe = diffusers.ZImagePipeline.from_pretrained("AlekseyCalvin/Z_Image_Deturbo_Diffusers", torch_dtype=torch.bfloat16)
pipe = ZImagePipeline.from_pretrained('AlekseyCalvin/Z-Image-Deturbo-Returbo-Base_Diffusers', torch_dtype=torch.bfloat16)
#pipe.text_encoder = Qwen3ForCausalLM.from_pretrained('Qwen/Qwen3-4B-Instruct-2507').to(torch.bfloat16)
#pipe.vae = AutoencoderKL.from_pretrained("AlekseyCalvin/Custom_VAE-Z-image-FLUX.1-by-G-REPA", torch_dtype=torch.bfloat16, device_map="cuda")
#pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.float16).to("cuda")
#pipe.vae = AutoencoderKL.from_pretrained("AlekseyCalvin/Custom_VAE-Z-image-FLUX.1-by-G-REPA", torch_dtype=torch.bfloat16, device_map="cuda")
#custom_vae = AutoencoderKL.from_pretrained("AlekseyCalvin/AnimeVAE_by_Anzhc_for_Flux_ZiT", torch_dtype=torch.float32, ignore_mismatched_sizes=True, low_cpu_mem_usage=False, device_map=None)
# Manually move the VAE to the correct device (e.g., "cuda")
#pipe.vae = custom_vae.to("cuda")
device = "cuda" if torch.cuda.is_available() else "cpu"
#pipe.vae = AutoencoderKL.from_pretrained("REPA-E/e2e-flux-vae", torch_dtype=torch.bfloat16).to("cuda")
##The repa-e vae generates extremely noisy outputs for some reason.
#pipe.vae = DiffusersAutoencoderKL.from_pretrained("kaiyuyue/FLUX.2-dev-vae", torch_dtype=torch.float16, scaling_factor = 0.3611, shift_factor = 0.1159).to("cuda")
## Alas, the model would need to be retrained to work with the Flux2 vae, with its doubled channel count of 32.
#pipe.enable_model_cpu_offload()
try: # A temp hack for some version diffusers lora loading problem
from diffusers.utils.peft_utils import _derive_exclude_modules
def new_derive_exclude_modules(*args, **kwargs):
exclude_modules = _derive_exclude_modules(*args, **kwargs)
if exclude_modules is not None:
exclude_modules = [n for n in exclude_modules if "proj_out" not in n]
return exclude_modules
peft_utils._derive_exclude_modules = new_derive_exclude_modules
except:
pass
#model_id = ("zer0int/LongCLIP-GmP-ViT-L-14")
#config = CLIPConfig.from_pretrained(model_id)
#config.text_config.max_position_embeddings = 248
#clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True)
#clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248)
#pipe.tokenizer = clip_processor.tokenizer
#pipe.text_encoder = clip_model.text_model
#pipe.tokenizer_max_length = 248
#pipe.text_encoder.dtype = torch.bfloat16
#pipe.text_encoder_2 = t5.text_model
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! "
lora_repo = selected_lora["repo"]
lora_trigger = selected_lora['trigger_word']
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}). Prompt using: '{lora_trigger}'!"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=50)
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora['trigger_word']
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""",
elem_id="title",
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> Hosted Gallery of Custom-Trained Text2Image Generative Low-Rank Adaptors (LoRAs) for Z-image models. Running Over: Z.I.T. Originally set-up for adapters fine-tuned for the use of RCA (Revolutionary Communists of America at [https://CommunistUSA.org/]), & other activists/artists. We also train and feature adapters inspired by works of Soviet Avant-Garde, Dada, Surrealism, & other radical styles + some original conceptions/fusions. Under those are identity models of notable revolutionaries & poets. Click squares to switch adapters & see links to their pages, many of them offering more info/resources. </div>"""
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> To reinforce/focus a selected adapter style, add its pre-encoded “trigger" word/phrase to your prompt. Corresponding activator info &/or prompt template appears once an adapter square is clicked. Copy/Paste these into prompt box as a starting point. </div>"""
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Select LoRa/Style & type prompt!")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Inventory",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=1.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=10)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.5, step=0.01, value=0.8)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue(default_concurrency_limit=2).launch(show_error=True)
app.launch()
|