Spaces:
Sleeping
Sleeping
import pandas as pd | |
import os | |
from datetime import datetime | |
from .utils import ( | |
parse_round_time_to_seconds, parse_striking_stats, to_int_safe, | |
calculate_age, prepare_fighters_data | |
) | |
from .config import DEFAULT_ELO, N_FIGHTS_HISTORY | |
def _get_fighter_history_stats( | |
fighter_name: str, | |
current_fight_date: datetime, | |
fighter_history: list[dict[str, any]], | |
fighters_df: pd.DataFrame, | |
n: int = N_FIGHTS_HISTORY | |
) -> dict[str, float]: | |
""" | |
Calculates performance statistics for a fighter based on their last n fights. | |
""" | |
past_fights = [f for f in fighter_history if f['date_obj'] < current_fight_date] | |
last_n_fights = past_fights[-n:] | |
if not last_n_fights: | |
# Return a default dictionary with the correct keys for a fighter with no history | |
return { | |
'wins_last_n': 0, | |
'avg_opp_elo_last_n': DEFAULT_ELO, | |
'ko_percent_last_n': 0, | |
'sig_str_landed_per_min_last_n': 0, | |
'takedown_accuracy_last_n': 0, | |
'sub_attempts_per_min_last_n': 0, | |
} | |
stats = { | |
'wins': 0, 'ko_wins': 0, 'total_time_secs': 0, | |
'sig_str_landed': 0, 'opponent_elos': [], | |
'td_landed': 0, 'td_attempted': 0, 'sub_attempts': 0 | |
} | |
for fight in last_n_fights: | |
is_fighter_1 = (fight['fighter_1'] == fighter_name) | |
opponent_name = fight['fighter_2'] if is_fighter_1 else fight['fighter_1'] | |
f_prefix = 'f1' if is_fighter_1 else 'f2' | |
if fight['winner'] == fighter_name: | |
stats['wins'] += 1 | |
if 'KO' in fight['method']: | |
stats['ko_wins'] += 1 | |
if opponent_name in fighters_df.index: | |
opp_elo = fighters_df.loc[opponent_name, 'elo'] | |
stats['opponent_elos'].append(opp_elo if pd.notna(opp_elo) else DEFAULT_ELO) | |
stats['total_time_secs'] += parse_round_time_to_seconds(fight['round'], fight['time']) | |
sig_str_stat = fight.get(f'{f_prefix}_sig_str', '0 of 0') | |
landed, _ = parse_striking_stats(sig_str_stat) | |
stats['sig_str_landed'] += landed | |
td_stat = fight.get(f'{f_prefix}_td', '0 of 0') | |
td_landed, td_attempted = parse_striking_stats(td_stat) | |
stats['td_landed'] += td_landed | |
stats['td_attempted'] += td_attempted | |
stats['sub_attempts'] += to_int_safe(fight.get(f'{f_prefix}_sub_att')) | |
# Final calculations | |
avg_opp_elo = sum(stats['opponent_elos']) / len(stats['opponent_elos']) if stats['opponent_elos'] else 1500 | |
total_minutes = stats['total_time_secs'] / 60 if stats['total_time_secs'] > 0 else 0 | |
return { | |
'wins_last_n': stats['wins'], | |
'avg_opp_elo_last_n': avg_opp_elo, | |
'ko_percent_last_n': (stats['ko_wins'] / stats['wins']) if stats['wins'] > 0 else 0, | |
'sig_str_landed_per_min_last_n': (stats['sig_str_landed'] / total_minutes) if total_minutes > 0 else 0, | |
'takedown_accuracy_last_n': (stats['td_landed'] / stats['td_attempted']) if stats['td_attempted'] > 0 else 0, | |
'sub_attempts_per_min_last_n': (stats['sub_attempts'] / total_minutes) if total_minutes > 0 else 0, | |
} | |
def preprocess_for_ml( | |
fights_to_process: list[dict[str, any]], | |
fighters_csv_path: str | |
) -> tuple[pd.DataFrame, pd.Series, pd.DataFrame]: | |
""" | |
Transforms raw fight and fighter data into a feature matrix (X) and target vector (y) | |
suitable for a binary classification machine learning model. | |
Args: | |
fights_to_process: The list of fights to process. | |
fighters_csv_path: Path to the CSV file with all fighter stats. | |
Returns: | |
Feature matrix X, target vector y, and metadata DataFrame. | |
""" | |
if not os.path.exists(fighters_csv_path): | |
raise FileNotFoundError(f"Fighters data not found at '{fighters_csv_path}'.") | |
fighters_df = pd.read_csv(fighters_csv_path) | |
fighters_prepared = prepare_fighters_data(fighters_df) | |
# 2. Pre-calculate fighter histories to speed up lookups | |
# And convert date strings to datetime objects once | |
for fight in fights_to_process: | |
try: | |
# This will work if event_date is a string | |
fight['date_obj'] = datetime.strptime(fight['event_date'], '%B %d, %Y') | |
except TypeError: | |
# This will be triggered if it's already a date-like object (e.g., Timestamp) | |
fight['date_obj'] = fight['event_date'] | |
fighter_histories = {} | |
for fighter_name in fighters_prepared.index: | |
history = [f for f in fights_to_process if fighter_name in (f['fighter_1'], f['fighter_2'])] | |
fighter_histories[fighter_name] = sorted(history, key=lambda x: x['date_obj']) | |
# 3. Process fights to create features and targets | |
feature_list = [] | |
target_list = [] | |
metadata_list = [] | |
for fight in fights_to_process: | |
# Per the dataset's design, fighter_1 is always the winner. | |
f1_name, f2_name = fight['fighter_1'], fight['fighter_2'] | |
if f1_name not in fighters_prepared.index or f2_name not in fighters_prepared.index: | |
continue | |
f1_stats, f2_stats = fighters_prepared.loc[f1_name], fighters_prepared.loc[f2_name] | |
if isinstance(f1_stats, pd.DataFrame): f1_stats = f1_stats.iloc[0] | |
if isinstance(f2_stats, pd.DataFrame): f2_stats = f2_stats.iloc[0] | |
# Calculate ages for both fighters | |
f1_age = calculate_age(f1_stats.get('dob'), fight['event_date']) | |
f2_age = calculate_age(f2_stats.get('dob'), fight['event_date']) | |
# Get historical stats for both fighters | |
f1_hist_stats = _get_fighter_history_stats(f1_name, fight['date_obj'], fighter_histories.get(f1_name, []), fighters_prepared) | |
f2_hist_stats = _get_fighter_history_stats(f2_name, fight['date_obj'], fighter_histories.get(f2_name, []), fighters_prepared) | |
# --- Create two training examples from each fight for a balanced dataset --- | |
# 1. The "Win" case: (fighter_1 - fighter_2) | |
features_win = { | |
# Original diffs | |
'elo_diff': f1_stats.get('elo', 1500) - f2_stats.get('elo', 1500), | |
'height_diff_cm': f1_stats.get('height_cm', 0) - f2_stats.get('height_cm', 0), | |
'reach_diff_in': f1_stats.get('reach_in', 0) - f2_stats.get('reach_in', 0), | |
'age_diff_years': (f1_age - f2_age) if f1_age and f2_age else 0, | |
'stance_is_different': 1 if f1_stats.get('stance') != f2_stats.get('stance') else 0, | |
# New historical diffs | |
'wins_last_5_diff': f1_hist_stats['wins_last_n'] - f2_hist_stats['wins_last_n'], | |
'avg_opp_elo_last_5_diff': f1_hist_stats['avg_opp_elo_last_n'] - f2_hist_stats['avg_opp_elo_last_n'], | |
'ko_percent_last_5_diff': f1_hist_stats['ko_percent_last_n'] - f2_hist_stats['ko_percent_last_n'], | |
'sig_str_landed_per_min_last_5_diff': f1_hist_stats['sig_str_landed_per_min_last_n'] - f2_hist_stats['sig_str_landed_per_min_last_n'], | |
# Grappling features | |
'takedown_accuracy_last_5_diff': f1_hist_stats['takedown_accuracy_last_n'] - f2_hist_stats['takedown_accuracy_last_n'], | |
'sub_attempts_per_min_last_5_diff': f1_hist_stats['sub_attempts_per_min_last_n'] - f2_hist_stats['sub_attempts_per_min_last_n'], | |
} | |
feature_list.append(features_win) | |
target_list.append(1) # 1 represents a win | |
# 2. The "Loss" case: (fighter_2 - fighter_1) | |
# We invert the differences for the losing case. | |
features_loss = {key: -value for key, value in features_win.items()} | |
# Stance difference is symmetric; it doesn't get inverted. | |
features_loss['stance_is_different'] = features_win['stance_is_different'] | |
feature_list.append(features_loss) | |
target_list.append(0) # 0 represents a loss | |
# Add metadata for both generated samples | |
# The 'winner' and 'loser' are consistent with the original data structure | |
metadata_list.append({ | |
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date'] | |
}) | |
metadata_list.append({ | |
'winner': f1_name, 'loser': f2_name, 'event_date': fight['event_date'] | |
}) | |
X = pd.DataFrame(feature_list).fillna(0) | |
y = pd.Series(target_list, name='winner') | |
metadata = pd.DataFrame(metadata_list) | |
print(f"Preprocessing complete. Generated {X.shape[0]} samples with {X.shape[1]} features.") | |
return X, y, metadata | |