GlucoPilot / app.py
Anupam007's picture
Update app.py
add652a verified
from datasets import load_dataset
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
from difflib import get_close_matches
from typing import Optional, Dict, Any
import json
import io
import os
# Configuration (unchanged)
INSULIN_TYPES = {
"Rapid-Acting": {"onset": 0.25, "duration": 4, "peak_time": 1.0},
"Long-Acting": {"onset": 2, "duration": 24, "peak_time": 8},
}
DEFAULT_BASAL_RATES = {
"00:00-06:00": 0.8,
"06:00-12:00": 1.0,
"12:00-18:00": 0.9,
"18:00-24:00": 0.7
}
GI_RANGES = {
"low": (0, 55),
"medium": (56, 69),
"high": (70, 100)
}
# Utility Functions (mostly unchanged)
def estimate_gi_timing(gi_value: Optional[int]) -> tuple[float, float]:
if gi_value is None:
return 1.0, 2.5
if gi_value <= 55:
return 1.0, 3.0
elif 56 <= gi_value <= 69:
return 0.75, 2.0
else:
return 0.5, 1.5
def load_food_data():
try:
ds = load_dataset("Anupam007/diabetic-food-analyzer")
food_data = pd.DataFrame(ds['train'])
food_data.columns = [col.lower().strip() for col in food_data.columns]
food_data['food_name'] = food_data['food_name'].str.lower().str.strip()
return food_data
except Exception as e:
print(f"Error loading food data: {e}")
return pd.DataFrame()
try:
processor = AutoImageProcessor.from_pretrained("rajistics/finetuned-indian-food")
model = AutoModelForImageClassification.from_pretrained("rajistics/finetuned-indian-food")
model_loaded = True
except Exception as e:
print(f"Model Load Error: {e}")
model_loaded = False
processor = None
model = None
def classify_food(image):
if not model_loaded or image is None:
return "unknown"
try:
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_idx = torch.argmax(outputs.logits, dim=-1).item()
food_name = model.config.id2label.get(predicted_idx, "unknown").lower()
return food_name
except Exception as e:
print(f"Classify food error: {e}")
return "unknown"
def get_food_nutrition(food_name: str, food_data: pd.DataFrame, weight_grams: Optional[float] = None) -> tuple[Optional[Dict[str, Any]], str]:
food_name_lower = food_name.lower().strip()
matches = get_close_matches(food_name_lower, food_data['food_name'].tolist(), n=1, cutoff=0.6)
correction_note = ""
if matches:
corrected_name = matches[0]
if corrected_name != food_name_lower:
correction_note = f"Note: '{food_name}' corrected to '{corrected_name}'"
matched_row = food_data[food_data['food_name'] == corrected_name].iloc[0]
base_carbs = float(matched_row.get('unit_serving_carb_g', matched_row.get('carb_g', 0.0)))
serving_size = matched_row.get('servings_unit', 'unknown')
gi_value = matched_row.get('glycemic_index', None)
if pd.isna(gi_value):
gi_value = None
else:
try:
gi_value = int(float(gi_value))
except (ValueError, TypeError):
gi_value = None
if weight_grams and serving_size != 'unknown':
try:
serving_weight = float(matched_row.get('serving_weight_grams', 100))
portion_size = weight_grams / serving_weight
except (ValueError, TypeError):
portion_size = 1.0
else:
portion_size = 1.0
adjusted_carbs = base_carbs * portion_size
nutrition_info = {
'matched_food': matched_row['food_name'],
'category': matched_row.get('primarysource', 'unknown'),
'subcategory': 'unknown',
'base_carbs': base_carbs,
'adjusted_carbs': adjusted_carbs,
'serving_size': f"1 {serving_size}",
'portion_multiplier': portion_size,
'notes': 'none',
'glycemic_index': gi_value
}
return nutrition_info, correction_note
return None, f"No close match found for '{food_name}'"
def determine_gi_level(gi_value: Optional[int]) -> str:
if gi_value is None:
return "Unknown"
for level, (lower, upper) in GI_RANGES.items():
if lower <= gi_value <= upper:
return level.capitalize()
return "Unknown"
def get_basal_rate(current_time_hour: float, basal_rates: Dict[str, float]) -> float:
for interval, rate in basal_rates.items():
try:
start, end = [int(x.split(':')[0]) for x in interval.split('-')]
if start <= current_time_hour < end or (start <= current_time_hour and end == 24):
return rate
except Exception as e:
print(f"Invalid basal interval {interval}: {e}")
return 0.8
def insulin_activity(t: float, insulin_type: str, bolus_dose: float, bolus_duration: float = 0) -> float:
insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
peak_time = insulin_data['peak_time']
duration = insulin_data['duration']
if bolus_duration > 0:
if 0 <= t <= bolus_duration:
return bolus_dose / bolus_duration
return 0
if t < 0:
return 0
elif t < peak_time:
return bolus_dose * (t / peak_time) * np.exp(1 - t/peak_time)
elif t < duration:
return bolus_dose * np.exp((peak_time - t) / (duration - peak_time))
return 0
def calculate_active_insulin(insulin_history: list, current_time: float) -> float:
return sum(insulin_activity(current_time - dose_time, insulin_type, dose_amount, bolus_duration)
for dose_time, dose_amount, insulin_type, bolus_duration in insulin_history)
def calculate_insulin_needs(carbs: float, glucose_current: float, glucose_target: float,
tdd: float, weight: float, insulin_type: str = "Rapid-Acting",
override_correction_dose: Optional[float] = None) -> Dict[str, Any]:
if tdd <= 0 or weight <= 0:
return {'error': 'TDD and weight must be positive'}
insulin_data = INSULIN_TYPES.get(insulin_type, INSULIN_TYPES["Rapid-Acting"])
icr = 400 / tdd
isf = 1700 / tdd
correction_dose = (glucose_current - glucose_target) / isf if override_correction_dose is None else override_correction_dose
carb_dose = carbs / icr
total_bolus = max(0, carb_dose + correction_dose)
basal_dose = weight * 0.5
return {
'icr': round(icr, 2),
'isf': round(isf, 2),
'correction_dose': round(correction_dose, 2),
'carb_dose': round(carb_dose, 2),
'total_bolus': round(total_bolus, 2),
'basal_dose': round(basal_dose, 2),
'insulin_type': insulin_type,
'insulin_onset': insulin_data['onset'],
'insulin_duration': insulin_data['duration'],
'peak_time': insulin_data['peak_time']
}
def create_detailed_report(nutrition_info: Dict[str, Any], insulin_info: Dict[str, Any],
current_basal_rate: float, correction_note: str) -> tuple[str, str, str]:
gi_level = determine_gi_level(nutrition_info.get('glycemic_index'))
peak_time, duration = estimate_gi_timing(nutrition_info.get('glycemic_index'))
glucose_meal_details = f"""
GLUCOSE & MEAL DETAILS:
- Detected Food: {nutrition_info['matched_food']}
- Category: {nutrition_info['category']}
- Glycemic Index: {nutrition_info.get('glycemic_index', 'N/A')} ({gi_level})
- Peak Glucose Time: {peak_time} hours
- Glucose Effect Duration: {duration} hours
- Serving Size: {nutrition_info['serving_size']}
- Carbs per Serving: {nutrition_info['base_carbs']}g
- Portion Multiplier: {nutrition_info['portion_multiplier']}x
- Total Carbs: {nutrition_info['adjusted_carbs']}g
{correction_note}
"""
insulin_details = f"""
INSULIN DETAILS:
- ICR: 1:{insulin_info['icr']}
- ISF: 1:{insulin_info['isf']}
- Insulin Type: {insulin_info['insulin_type']}
- Onset: {insulin_info['insulin_onset']}h
- Duration: {insulin_info['insulin_duration']}h
- Peak: {insulin_info['peak_time']}h
- Correction Dose: {insulin_info['correction_dose']} units
- Carb Dose: {insulin_info['carb_dose']} units
- Total Bolus: {insulin_info['total_bolus']} units
"""
basal_details = f"""
BASAL SETTINGS:
- Basal Dose: {insulin_info['basal_dose']} units/day
- Current Basal Rate: {current_basal_rate} units/h
"""
return glucose_meal_details, insulin_details, basal_details
# Modified Main Dashboard
def diabetes_dashboard(initial_glucose, food_image, food_name_input, weight_grams,
insulin_type, override_correction_dose, extended_bolus_duration,
weight, tdd, target_glucose, basal_rates_input,
stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours):
food_data = load_food_data()
if food_data.empty:
return "Error loading food data", None, None, None, None
if food_name_input and food_name_input.strip():
food_name = food_name_input.strip()
else:
food_name = classify_food(food_image)
nutrition_info, correction_note = get_food_nutrition(food_name, food_data, weight_grams)
if not nutrition_info:
return correction_note, None, None, None, None
try:
basal_rates = json.loads(basal_rates_input)
except:
basal_rates = DEFAULT_BASAL_RATES
insulin_info = calculate_insulin_needs(
nutrition_info['adjusted_carbs'], initial_glucose, target_glucose,
tdd, weight, insulin_type, override_correction_dose
)
if 'error' in insulin_info:
return insulin_info['error'], None, None, None, None
current_basal_rate = get_basal_rate(12, basal_rates)
glucose_meal_details, insulin_details, basal_details = create_detailed_report(nutrition_info, insulin_info, current_basal_rate, correction_note)
hours = list(range(time_hours))
glucose_levels = []
current_glucose = initial_glucose
insulin_history = [(0, insulin_info['total_bolus'], insulin_type, extended_bolus_duration)]
for t in hours:
carb_effect = nutrition_info['adjusted_carbs'] * 0.1 * np.exp(-(t - 1.5) ** 2 / 2)
insulin_effect = calculate_active_insulin(insulin_history, t)
basal_effect = get_basal_rate(t, basal_rates)
stress_effect = stress_level * 2
sleep_effect = abs(8 - sleep_hours) * 5
exercise_effect = (exercise_duration / 60) * exercise_intensity * 2
current_glucose += carb_effect - insulin_effect - basal_effect + stress_effect + sleep_effect - exercise_effect
glucose_levels.append(max(70, min(400, current_glucose)))
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(hours, glucose_levels, 'b-', label='Predicted Glucose')
ax.axhline(y=target_glucose, color='g', linestyle='--', label='Target')
ax.fill_between(hours, 70, 180, alpha=0.1, color='g', label='Target Range')
ax.set_xlabel('Hours')
ax.set_ylabel('Glucose (mg/dL)')
ax.legend()
ax.grid(True)
return glucose_meal_details, insulin_details, basal_details, insulin_info['total_bolus'], fig
# Gradio Interface (unchanged)
with gr.Blocks(title="Type 1 Diabetes Management Dashboard") as app:
gr.Markdown("# Type 1 Diabetes Management Dashboard")
with gr.Tab("Glucose & Meal"):
initial_glucose = gr.Number(label="Current Glucose (mg/dL)", value=120)
target_glucose = gr.Number(label="Target Glucose (mg/dL)", value=100)
food_name_input = gr.Textbox(label="Food Name (optional)", placeholder="Enter food name manually")
weight_grams = gr.Number(label="Weight (grams, optional)", value=None)
food_image = gr.Image(label="Food Image (optional)", type="pil")
glucose_meal_output = gr.Textbox(label="Glucose & Meal Details", lines=10)
with gr.Tab("Insulin"):
insulin_type = gr.Dropdown(list(INSULIN_TYPES.keys()), label="Insulin Type", value="Rapid-Acting")
override_correction_dose = gr.Number(label="Override Correction Dose (units)", value=None)
extended_bolus_duration = gr.Number(label="Extended Bolus Duration (h)", value=0)
weight = gr.Number(label="Weight (kg)", value=70)
tdd = gr.Number(label="Total Daily Dose (units)", value=40)
insulin_output = gr.Textbox(label="Insulin Details", lines=10)
bolus_output = gr.Number(label="Bolus Dose (units)")
with gr.Tab("Basal Settings"):
basal_rates_input = gr.Textbox(label="Basal Rates (JSON)", value=json.dumps(DEFAULT_BASAL_RATES), lines=2)
basal_output = gr.Textbox(label="Basal Settings", lines=4)
with gr.Tab("Other Factors"):
stress_level = gr.Slider(1, 10, step=1, label="Stress Level", value=1)
sleep_hours = gr.Number(label="Sleep Hours", value=7)
exercise_duration = gr.Number(label="Exercise Duration (min)", value=0)
exercise_intensity = gr.Slider(1, 10, step=1, label="Exercise Intensity", value=1)
time_hours = gr.Slider(1, 24, step=1, label="Prediction Time (h)", value=6)
plot_output = gr.Plot(label="Glucose Prediction")
calculate_btn = gr.Button("Calculate")
calculate_btn.click(
diabetes_dashboard,
inputs=[
initial_glucose, food_image, food_name_input, weight_grams,
insulin_type, override_correction_dose, extended_bolus_duration,
weight, tdd, target_glucose, basal_rates_input,
stress_level, sleep_hours, exercise_duration, exercise_intensity, time_hours
],
outputs=[glucose_meal_output, insulin_output, basal_output, bolus_output, plot_output]
)
if __name__ == "__main__":
app.launch()