enhanced-rag-demo / demo /utils /migration_utils.py
Arthur Passuello
initial commit
5e1a30c
"""
Migration Utilities for Epic 2 Demo Database
============================================
Utilities to migrate existing pickle-based cache to persistent database
and handle data migrations between versions.
"""
import logging
import pickle
import json
import time
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple
import numpy as np
from .database_manager import DatabaseManager, get_database_manager
from .knowledge_cache import KnowledgeCache
logger = logging.getLogger(__name__)
class CacheMigrator:
"""Handles migration from pickle cache to database"""
def __init__(self, db_manager: Optional[DatabaseManager] = None):
"""
Initialize cache migrator
Args:
db_manager: Database manager instance (creates default if None)
"""
self.db_manager = db_manager or get_database_manager()
self.knowledge_cache = KnowledgeCache()
def migrate_cache_to_database(self, pdf_files: List[Path],
processor_config: Dict[str, Any],
embedder_config: Dict[str, Any]) -> bool:
"""
Migrate existing pickle cache to database
Args:
pdf_files: List of PDF files that were processed
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if migration successful
"""
logger.info("Starting migration from pickle cache to database...")
try:
# Check if cache is valid and has data
# Note: knowledge_cache.is_cache_valid expects (pdf_files, embedder_config) but
# create_embedder_config_hash expects a system object
# For migration, we'll use a simplified validation
if not self.knowledge_cache.is_valid():
logger.warning("Pickle cache is not valid or missing")
return False
# Load documents and embeddings from pickle cache
documents, embeddings = self.knowledge_cache.load_knowledge_base()
if not documents or embeddings is None:
logger.warning("No data found in pickle cache")
return False
logger.info(f"Loaded {len(documents)} documents and {embeddings.shape} embeddings from pickle cache")
# Convert documents to expected format
converted_docs = self._convert_documents_format(documents, embeddings)
logger.info(f"Converted {len(converted_docs)} documents for database save")
# Save to database
success = self.db_manager.save_documents_and_embeddings(
converted_docs, pdf_files, processor_config, embedder_config
)
if success:
logger.info("Migration to database completed successfully")
# Create backup of pickle cache before clearing
self._backup_pickle_cache()
# Optionally clear pickle cache
logger.info("Migration successful - pickle cache backed up")
return True
else:
logger.error("Failed to save migrated data to database")
return False
except Exception as e:
logger.error(f"Cache migration failed: {e}")
return False
def _convert_documents_format(self, documents: List[Any], embeddings: np.ndarray) -> List[Dict[str, Any]]:
"""Convert documents from pickle format to database format"""
converted_docs = []
for i, doc in enumerate(documents):
# Handle different document formats
if hasattr(doc, '__dict__'):
# Object format
converted_doc = {
'content': getattr(doc, 'content', ''),
'metadata': getattr(doc, 'metadata', {}),
'confidence': getattr(doc, 'confidence', 0.8),
'embedding': embeddings[i] if i < len(embeddings) else None
}
elif isinstance(doc, dict):
# Dictionary format
converted_doc = {
'content': doc.get('content', ''),
'metadata': doc.get('metadata', {}),
'confidence': doc.get('confidence', 0.8),
'embedding': embeddings[i] if i < len(embeddings) else None
}
else:
# String format
converted_doc = {
'content': str(doc),
'metadata': {},
'confidence': 0.8,
'embedding': embeddings[i] if i < len(embeddings) else None
}
# Ensure metadata has required fields
if 'metadata' not in converted_doc:
converted_doc['metadata'] = {}
# Extract source from metadata or create default
if 'source' not in converted_doc['metadata']:
# Try to get source from existing metadata
if hasattr(doc, 'metadata') and isinstance(doc.metadata, dict) and 'source' in doc.metadata:
converted_doc['metadata']['source'] = doc.metadata['source']
elif isinstance(doc, dict) and 'metadata' in doc and isinstance(doc['metadata'], dict) and 'source' in doc['metadata']:
converted_doc['metadata']['source'] = doc['metadata']['source']
else:
converted_doc['metadata']['source'] = f'document_{i}.pdf'
if 'page' not in converted_doc['metadata']:
converted_doc['metadata']['page'] = 1
converted_docs.append(converted_doc)
logger.info(f"Converted {len(converted_docs)} documents to database format")
return converted_docs
def _backup_pickle_cache(self) -> None:
"""Create backup of pickle cache files"""
try:
cache_dir = self.knowledge_cache.cache_dir
backup_dir = cache_dir / "backup"
backup_dir.mkdir(exist_ok=True)
timestamp = int(time.time())
# Backup main cache files
for cache_file in [self.knowledge_cache.documents_file,
self.knowledge_cache.embeddings_file,
self.knowledge_cache.metadata_file]:
if cache_file.exists():
backup_file = backup_dir / f"{cache_file.name}.{timestamp}.bak"
backup_file.write_bytes(cache_file.read_bytes())
logger.info(f"Pickle cache backed up to {backup_dir}")
except Exception as e:
logger.warning(f"Failed to backup pickle cache: {e}")
def verify_migration(self, pdf_files: List[Path]) -> bool:
"""
Verify that migration was successful by comparing data
Args:
pdf_files: List of PDF files to verify
Returns:
True if migration verification successful
"""
try:
# Load data from database
db_docs, db_embeddings = self.db_manager.load_documents_and_embeddings(pdf_files)
if not db_docs or db_embeddings is None:
logger.error("No data found in database after migration")
return False
# Basic checks
if len(db_docs) == 0:
logger.error("No documents found in database")
return False
if db_embeddings.shape[0] != len(db_docs):
logger.error(f"Embedding count mismatch: {db_embeddings.shape[0]} vs {len(db_docs)}")
return False
# Check that embeddings are valid
if np.isnan(db_embeddings).any():
logger.error("Database contains invalid embeddings (NaN values)")
return False
logger.info(f"Migration verification successful: {len(db_docs)} documents, {db_embeddings.shape} embeddings")
return True
except Exception as e:
logger.error(f"Migration verification failed: {e}")
return False
class DatabaseUpgrader:
"""Handles database schema upgrades and version migrations"""
def __init__(self, db_manager: Optional[DatabaseManager] = None):
"""
Initialize database upgrader
Args:
db_manager: Database manager instance
"""
self.db_manager = db_manager or get_database_manager()
def get_database_version(self) -> str:
"""Get current database version"""
try:
with self.db_manager.get_session() as session:
from .database_schema import SystemCache
version_cache = session.query(SystemCache).filter(
SystemCache.cache_key == 'database_version'
).first()
if version_cache:
return version_cache.cache_value.get('version', '1.0')
else:
# First time setup
return '1.0'
except Exception as e:
logger.warning(f"Could not get database version: {e}")
return '1.0'
def set_database_version(self, version: str) -> None:
"""Set database version"""
try:
with self.db_manager.get_session() as session:
from .database_schema import SystemCache
version_cache = session.query(SystemCache).filter(
SystemCache.cache_key == 'database_version'
).first()
if version_cache:
version_cache.cache_value = {'version': version}
version_cache.is_valid = True
else:
version_cache = SystemCache(
cache_key='database_version',
cache_type='system',
cache_value={'version': version},
cache_hash=self.db_manager._hash_config({'version': version})
)
session.add(version_cache)
session.commit()
except Exception as e:
logger.error(f"Could not set database version: {e}")
def upgrade_database(self) -> bool:
"""
Upgrade database to latest version
Returns:
True if upgrade successful
"""
current_version = self.get_database_version()
target_version = '1.0' # Current version
logger.info(f"Database version check: current={current_version}, target={target_version}")
if current_version == target_version:
logger.info("Database is already at latest version")
return True
try:
# Apply version-specific upgrades
if current_version < '1.0':
self._upgrade_to_1_0()
# Set final version
self.set_database_version(target_version)
logger.info(f"Database upgraded to version {target_version}")
return True
except Exception as e:
logger.error(f"Database upgrade failed: {e}")
return False
def _upgrade_to_1_0(self) -> None:
"""Upgrade to version 1.0"""
logger.info("Upgrading database to version 1.0...")
# Version 1.0 is the initial version, so just ensure tables exist
from .database_schema import DatabaseSchema
DatabaseSchema.create_all_tables(self.db_manager.engine)
logger.info("Database upgrade to 1.0 complete")
def migrate_existing_cache(pdf_files: List[Path], processor_config: Dict[str, Any],
embedder_config: Dict[str, Any]) -> bool:
"""
High-level function to migrate existing cache to database
Args:
pdf_files: List of PDF files
processor_config: Document processor configuration
embedder_config: Embedder configuration
Returns:
True if migration successful
"""
logger.info("Starting cache migration process...")
try:
# Initialize migrator
migrator = CacheMigrator()
# Attempt migration
success = migrator.migrate_cache_to_database(pdf_files, processor_config, embedder_config)
if success:
# Verify migration
if migrator.verify_migration(pdf_files):
logger.info("Cache migration completed and verified successfully")
return True
else:
logger.error("Migration verification failed")
return False
else:
logger.error("Cache migration failed")
return False
except Exception as e:
logger.error(f"Cache migration process failed: {e}")
return False
def upgrade_database() -> bool:
"""
High-level function to upgrade database to latest version
Returns:
True if upgrade successful
"""
logger.info("Starting database upgrade process...")
try:
upgrader = DatabaseUpgrader()
return upgrader.upgrade_database()
except Exception as e:
logger.error(f"Database upgrade process failed: {e}")
return False
def get_migration_status() -> Dict[str, Any]:
"""
Get status of migration and database
Returns:
Dictionary with migration status information
"""
try:
db_manager = get_database_manager()
upgrader = DatabaseUpgrader(db_manager)
knowledge_cache = KnowledgeCache()
status = {
'database_exists': db_manager.is_database_populated(),
'database_version': upgrader.get_database_version(),
'database_stats': db_manager.get_database_stats(),
'pickle_cache_exists': knowledge_cache.is_valid(),
'pickle_cache_info': knowledge_cache.get_cache_info()
}
return status
except Exception as e:
logger.error(f"Failed to get migration status: {e}")
return {'error': str(e)}