enhanced-rag-demo / shared_utils /generation /adaptive_prompt_engine.py
Arthur Passuello
Added missing sources
b5246f1
"""
Adaptive Prompt Engine for Dynamic Context-Aware Prompt Optimization.
This module provides intelligent prompt adaptation based on context quality,
query complexity, and performance requirements.
"""
import logging
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from enum import Enum
import numpy as np
from .prompt_templates import (
QueryType,
PromptTemplate,
TechnicalPromptTemplates
)
class ContextQuality(Enum):
"""Context quality levels for adaptive prompting."""
HIGH = "high" # >0.8 relevance, low noise
MEDIUM = "medium" # 0.5-0.8 relevance, moderate noise
LOW = "low" # <0.5 relevance, high noise
class QueryComplexity(Enum):
"""Query complexity levels."""
SIMPLE = "simple" # Single concept, direct answer
MODERATE = "moderate" # Multiple concepts, structured answer
COMPLEX = "complex" # Multi-step reasoning, comprehensive answer
@dataclass
class ContextMetrics:
"""Metrics for evaluating context quality."""
relevance_score: float
noise_ratio: float
chunk_count: int
avg_chunk_length: int
technical_density: float
source_diversity: int
@dataclass
class AdaptivePromptConfig:
"""Configuration for adaptive prompt generation."""
context_quality: ContextQuality
query_complexity: QueryComplexity
max_context_length: int
prefer_concise: bool
include_few_shot: bool
enable_chain_of_thought: bool
confidence_threshold: float
class AdaptivePromptEngine:
"""
Intelligent prompt adaptation engine that optimizes prompts based on:
- Context quality and relevance
- Query complexity and type
- Performance requirements
- User preferences
"""
def __init__(self):
"""Initialize the adaptive prompt engine."""
self.logger = logging.getLogger(__name__)
# Context quality thresholds
self.high_quality_threshold = 0.8
self.medium_quality_threshold = 0.5
# Query complexity indicators
self.complex_keywords = {
"implementation": ["implement", "build", "create", "develop", "setup"],
"comparison": ["compare", "difference", "versus", "vs", "better"],
"analysis": ["analyze", "evaluate", "assess", "study", "examine"],
"multi_step": ["process", "procedure", "steps", "how to", "guide"]
}
# Length optimization thresholds
self.token_limits = {
"concise": 512,
"standard": 1024,
"detailed": 2048,
"comprehensive": 4096
}
def analyze_context_quality(self, chunks: List[Dict[str, Any]]) -> ContextMetrics:
"""
Analyze the quality of retrieved context chunks.
Args:
chunks: List of context chunks with metadata
Returns:
ContextMetrics with quality assessment
"""
if not chunks:
return ContextMetrics(
relevance_score=0.0,
noise_ratio=1.0,
chunk_count=0,
avg_chunk_length=0,
technical_density=0.0,
source_diversity=0
)
# Calculate relevance score (using confidence scores if available)
relevance_scores = []
for chunk in chunks:
# Use confidence score if available, otherwise use a heuristic
if 'confidence' in chunk:
relevance_scores.append(chunk['confidence'])
elif 'score' in chunk:
relevance_scores.append(chunk['score'])
else:
# Heuristic: longer chunks with technical terms are more relevant
content = chunk.get('content', chunk.get('text', ''))
tech_terms = self._count_technical_terms(content)
relevance_scores.append(min(tech_terms / 10.0, 1.0))
avg_relevance = np.mean(relevance_scores) if relevance_scores else 0.0
# Calculate noise ratio (fragments, repetitive content)
noise_count = 0
total_chunks = len(chunks)
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
if self._is_noisy_chunk(content):
noise_count += 1
noise_ratio = noise_count / total_chunks if total_chunks > 0 else 0.0
# Calculate average chunk length
chunk_lengths = []
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
chunk_lengths.append(len(content))
avg_chunk_length = int(np.mean(chunk_lengths)) if chunk_lengths else 0
# Calculate technical density
technical_density = self._calculate_technical_density(chunks)
# Calculate source diversity
sources = set()
for chunk in chunks:
source = chunk.get('metadata', {}).get('source', 'unknown')
sources.add(source)
source_diversity = len(sources)
return ContextMetrics(
relevance_score=avg_relevance,
noise_ratio=noise_ratio,
chunk_count=len(chunks),
avg_chunk_length=avg_chunk_length,
technical_density=technical_density,
source_diversity=source_diversity
)
def determine_query_complexity(self, query: str) -> QueryComplexity:
"""
Determine the complexity level of a query.
Args:
query: User's question
Returns:
QueryComplexity level
"""
query_lower = query.lower()
complexity_score = 0
# Check for complex keywords
for category, keywords in self.complex_keywords.items():
if any(keyword in query_lower for keyword in keywords):
complexity_score += 1
# Check for multiple questions or concepts
if '?' in query[:-1]: # Multiple question marks (excluding the last one)
complexity_score += 1
if any(word in query_lower for word in ["and", "or", "also", "additionally", "furthermore"]):
complexity_score += 1
# Check query length
word_count = len(query.split())
if word_count > 20:
complexity_score += 1
elif word_count > 10:
complexity_score += 0.5
# Determine complexity level
if complexity_score >= 2:
return QueryComplexity.COMPLEX
elif complexity_score >= 1:
return QueryComplexity.MODERATE
else:
return QueryComplexity.SIMPLE
def generate_adaptive_config(
self,
query: str,
context_chunks: List[Dict[str, Any]],
max_tokens: int = 2048,
prefer_speed: bool = False
) -> AdaptivePromptConfig:
"""
Generate adaptive prompt configuration based on context and query analysis.
Args:
query: User's question
context_chunks: Retrieved context chunks
max_tokens: Maximum token limit
prefer_speed: Whether to optimize for speed over quality
Returns:
AdaptivePromptConfig with optimized settings
"""
# Analyze context quality
context_metrics = self.analyze_context_quality(context_chunks)
# Determine context quality level
if context_metrics.relevance_score >= self.high_quality_threshold:
context_quality = ContextQuality.HIGH
elif context_metrics.relevance_score >= self.medium_quality_threshold:
context_quality = ContextQuality.MEDIUM
else:
context_quality = ContextQuality.LOW
# Determine query complexity
query_complexity = self.determine_query_complexity(query)
# Adapt configuration based on analysis
config = AdaptivePromptConfig(
context_quality=context_quality,
query_complexity=query_complexity,
max_context_length=max_tokens,
prefer_concise=prefer_speed,
include_few_shot=self._should_include_few_shot(context_quality, query_complexity),
enable_chain_of_thought=self._should_enable_cot(query_complexity),
confidence_threshold=self._get_confidence_threshold(context_quality)
)
return config
def create_adaptive_prompt(
self,
query: str,
context_chunks: List[Dict[str, Any]],
config: Optional[AdaptivePromptConfig] = None
) -> Dict[str, str]:
"""
Create an adaptive prompt optimized for the specific query and context.
Args:
query: User's question
context_chunks: Retrieved context chunks
config: Optional configuration (auto-generated if None)
Returns:
Dict with optimized 'system' and 'user' prompts
"""
if config is None:
config = self.generate_adaptive_config(query, context_chunks)
# Get base template
query_type = TechnicalPromptTemplates.detect_query_type(query)
base_template = TechnicalPromptTemplates.get_template_for_query(query)
# Adapt template based on configuration
adapted_template = self._adapt_template(base_template, config)
# Format context with optimization
formatted_context = self._format_context_adaptive(context_chunks, config)
# Create prompt with adaptive formatting
prompt = TechnicalPromptTemplates.format_prompt_with_template(
query=query,
context=formatted_context,
template=adapted_template,
include_few_shot=config.include_few_shot
)
# Add chain-of-thought if enabled
if config.enable_chain_of_thought:
prompt = self._add_chain_of_thought(prompt, query_type)
return prompt
def _adapt_template(
self,
base_template: PromptTemplate,
config: AdaptivePromptConfig
) -> PromptTemplate:
"""
Adapt a base template based on configuration.
Args:
base_template: Base prompt template
config: Adaptive configuration
Returns:
Adapted PromptTemplate
"""
# Modify system prompt based on context quality
system_prompt = base_template.system_prompt
if config.context_quality == ContextQuality.LOW:
system_prompt += """
IMPORTANT: The provided context may have limited relevance. Focus on:
- Only use information that directly relates to the question
- Clearly state if information is insufficient
- Avoid making assumptions beyond the provided context
- Be explicit about confidence levels"""
elif config.context_quality == ContextQuality.HIGH:
system_prompt += """
CONTEXT QUALITY: High-quality, relevant context is provided. You can:
- Provide comprehensive, detailed answers
- Make reasonable inferences from the context
- Include related technical details and examples
- Reference multiple sources confidently"""
# Modify answer guidelines based on complexity and preferences
answer_guidelines = base_template.answer_guidelines
if config.prefer_concise:
answer_guidelines += "\n\nResponse style: Be concise and focus on essential information. Aim for clarity over comprehensiveness."
if config.query_complexity == QueryComplexity.COMPLEX:
answer_guidelines += "\n\nComplex query handling: Break down your answer into clear sections. Use numbered steps for procedures."
return PromptTemplate(
system_prompt=system_prompt,
context_format=base_template.context_format,
query_format=base_template.query_format,
answer_guidelines=answer_guidelines,
few_shot_examples=base_template.few_shot_examples
)
def _format_context_adaptive(
self,
chunks: List[Dict[str, Any]],
config: AdaptivePromptConfig
) -> str:
"""
Format context chunks with adaptive optimization.
Args:
chunks: Context chunks to format
config: Adaptive configuration
Returns:
Formatted context string
"""
if not chunks:
return "No relevant context available."
# Filter chunks based on confidence if low quality context
filtered_chunks = chunks
if config.context_quality == ContextQuality.LOW:
filtered_chunks = [
chunk for chunk in chunks
if self._meets_confidence_threshold(chunk, config.confidence_threshold)
]
# Limit context length if needed
if config.prefer_concise:
filtered_chunks = filtered_chunks[:3] # Limit to top 3 chunks
# Format chunks
context_parts = []
for i, chunk in enumerate(filtered_chunks):
chunk_text = chunk.get('content', chunk.get('text', ''))
# Truncate if too long and prefer_concise is True
if config.prefer_concise and len(chunk_text) > 800:
chunk_text = chunk_text[:800] + "..."
metadata = chunk.get('metadata', {})
page_num = metadata.get('page_number', 'unknown')
source = metadata.get('source', 'unknown')
context_parts.append(
f"[chunk_{i+1}] (Page {page_num} from {source}):\n{chunk_text}"
)
return "\n\n---\n\n".join(context_parts)
def _add_chain_of_thought(
self,
prompt: Dict[str, str],
query_type: QueryType
) -> Dict[str, str]:
"""
Add chain-of-thought reasoning to the prompt.
Args:
prompt: Base prompt dictionary
query_type: Type of query
Returns:
Enhanced prompt with chain-of-thought
"""
cot_addition = """
Before providing your final answer, think through this step-by-step:
1. What is the user specifically asking for?
2. What relevant information is available in the context?
3. How should I structure my response for maximum clarity?
4. Are there any important caveats or limitations to mention?
Step-by-step reasoning:"""
prompt["user"] = prompt["user"] + cot_addition
return prompt
def _should_include_few_shot(
self,
context_quality: ContextQuality,
query_complexity: QueryComplexity
) -> bool:
"""Determine if few-shot examples should be included."""
# Include few-shot for complex queries or when context quality is low
if query_complexity == QueryComplexity.COMPLEX:
return True
if context_quality == ContextQuality.LOW:
return True
return False
def _should_enable_cot(self, query_complexity: QueryComplexity) -> bool:
"""Determine if chain-of-thought should be enabled."""
return query_complexity == QueryComplexity.COMPLEX
def _get_confidence_threshold(self, context_quality: ContextQuality) -> float:
"""Get confidence threshold based on context quality."""
thresholds = {
ContextQuality.HIGH: 0.3,
ContextQuality.MEDIUM: 0.5,
ContextQuality.LOW: 0.7
}
return thresholds[context_quality]
def _count_technical_terms(self, text: str) -> int:
"""Count technical terms in text."""
technical_terms = [
"risc-v", "riscv", "cpu", "gpu", "mcu", "interrupt", "register",
"memory", "cache", "pipeline", "instruction", "assembly", "compiler",
"embedded", "freertos", "rtos", "gpio", "uart", "spi", "i2c",
"adc", "dac", "timer", "pwm", "dma", "firmware", "bootloader",
"ai", "ml", "neural", "transformer", "attention", "embedding"
]
text_lower = text.lower()
count = 0
for term in technical_terms:
count += text_lower.count(term)
return count
def _is_noisy_chunk(self, content: str) -> bool:
"""Determine if a chunk is noisy (low quality)."""
# Check for common noise indicators
noise_indicators = [
"table of contents",
"copyright",
"creative commons",
"license",
"all rights reserved",
"terms of use",
"privacy policy"
]
content_lower = content.lower()
# Check for noise indicators
for indicator in noise_indicators:
if indicator in content_lower:
return True
# Check for very short fragments
if len(content) < 100:
return True
# Check for repetitive content
words = content.split()
if len(set(words)) < len(words) * 0.3: # Less than 30% unique words
return True
return False
def _calculate_technical_density(self, chunks: List[Dict[str, Any]]) -> float:
"""Calculate technical density of chunks."""
if not chunks:
return 0.0
total_terms = 0
total_words = 0
for chunk in chunks:
content = chunk.get('content', chunk.get('text', ''))
words = content.split()
total_words += len(words)
total_terms += self._count_technical_terms(content)
return (total_terms / total_words) if total_words > 0 else 0.0
def _meets_confidence_threshold(
self,
chunk: Dict[str, Any],
threshold: float
) -> bool:
"""Check if chunk meets confidence threshold."""
confidence = chunk.get('confidence', chunk.get('score', 0.5))
return confidence >= threshold
# Example usage
if __name__ == "__main__":
# Initialize engine
engine = AdaptivePromptEngine()
# Example context chunks
example_chunks = [
{
"content": "RISC-V is an open-source instruction set architecture...",
"metadata": {"page_number": 1, "source": "riscv-spec.pdf"},
"confidence": 0.9
},
{
"content": "The RISC-V processor supports 32-bit and 64-bit implementations...",
"metadata": {"page_number": 2, "source": "riscv-spec.pdf"},
"confidence": 0.8
}
]
# Example queries
simple_query = "What is RISC-V?"
complex_query = "How do I implement a complete interrupt handling system in RISC-V with nested interrupts and priority management?"
# Generate adaptive prompts
simple_config = engine.generate_adaptive_config(simple_query, example_chunks)
complex_config = engine.generate_adaptive_config(complex_query, example_chunks)
print(f"Simple query complexity: {simple_config.query_complexity}")
print(f"Complex query complexity: {complex_config.query_complexity}")
print(f"Context quality: {simple_config.context_quality}")
print(f"Few-shot enabled: {complex_config.include_few_shot}")
print(f"Chain-of-thought enabled: {complex_config.enable_chain_of_thought}")