Arthur Passuello
Added missing sources
b5246f1
"""
A/B Testing Framework for Prompt Optimization.
This module provides systematic prompt optimization through A/B testing,
performance analysis, and automated prompt variation generation.
"""
import json
import time
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from enum import Enum
from pathlib import Path
import numpy as np
from collections import defaultdict
import logging
from .prompt_templates import QueryType, PromptTemplate, TechnicalPromptTemplates
class OptimizationMetric(Enum):
"""Metrics for evaluating prompt performance."""
RESPONSE_TIME = "response_time"
CONFIDENCE_SCORE = "confidence_score"
CITATION_COUNT = "citation_count"
ANSWER_LENGTH = "answer_length"
TECHNICAL_ACCURACY = "technical_accuracy"
USER_SATISFACTION = "user_satisfaction"
@dataclass
class PromptVariation:
"""Represents a prompt variation for A/B testing."""
variation_id: str
name: str
description: str
template: PromptTemplate
query_type: QueryType
created_at: float
metadata: Dict[str, Any]
@dataclass
class TestResult:
"""Represents a single test result."""
variation_id: str
query: str
query_type: QueryType
response_time: float
confidence_score: float
citation_count: int
answer_length: int
technical_accuracy: Optional[float] = None
user_satisfaction: Optional[float] = None
timestamp: float = None
metadata: Dict[str, Any] = None
def __post_init__(self):
if self.timestamp is None:
self.timestamp = time.time()
if self.metadata is None:
self.metadata = {}
@dataclass
class ComparisonResult:
"""Results of A/B test comparison."""
variation_a: str
variation_b: str
metric: OptimizationMetric
a_mean: float
b_mean: float
improvement_percent: float
p_value: float
confidence_interval: Tuple[float, float]
is_significant: bool
sample_size: int
recommendation: str
class PromptOptimizer:
"""
A/B testing framework for systematic prompt optimization.
Features:
- Automated prompt variation generation
- Performance metric tracking
- Statistical significance testing
- Recommendation engine
- Persistence and experiment tracking
"""
def __init__(self, experiment_dir: str = "experiments"):
"""
Initialize the prompt optimizer.
Args:
experiment_dir: Directory to store experiment data
"""
self.experiment_dir = Path(experiment_dir)
self.experiment_dir.mkdir(exist_ok=True)
self.variations: Dict[str, PromptVariation] = {}
self.test_results: List[TestResult] = []
self.active_experiments: Dict[str, List[str]] = {}
# Load existing experiments
self._load_experiments()
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
def create_variation(
self,
base_template: PromptTemplate,
query_type: QueryType,
variation_name: str,
modifications: Dict[str, str],
description: str = ""
) -> str:
"""
Create a new prompt variation.
Args:
base_template: Base template to modify
query_type: Type of query this variation is for
variation_name: Human-readable name
modifications: Dict of template field modifications
description: Description of the variation
Returns:
Variation ID
"""
variation_id = f"{query_type.value}_{variation_name}_{int(time.time())}"
# Create modified template
modified_template = PromptTemplate(
system_prompt=modifications.get("system_prompt", base_template.system_prompt),
context_format=modifications.get("context_format", base_template.context_format),
query_format=modifications.get("query_format", base_template.query_format),
answer_guidelines=modifications.get("answer_guidelines", base_template.answer_guidelines)
)
variation = PromptVariation(
variation_id=variation_id,
name=variation_name,
description=description,
template=modified_template,
query_type=query_type,
created_at=time.time(),
metadata=modifications
)
self.variations[variation_id] = variation
self._save_variation(variation)
self.logger.info(f"Created variation: {variation_id}")
return variation_id
def create_temperature_variations(
self,
base_query_type: QueryType,
temperatures: List[float] = [0.3, 0.5, 0.7, 0.9]
) -> List[str]:
"""
Create variations with different temperature settings.
Args:
base_query_type: Query type to create variations for
temperatures: List of temperature values to test
Returns:
List of variation IDs
"""
base_template = TechnicalPromptTemplates.get_template_for_query("")
if base_query_type != QueryType.GENERAL:
template_map = {
QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
}
base_template = template_map[base_query_type]()
variation_ids = []
for temp in temperatures:
temp_modification = {
"system_prompt": base_template.system_prompt + f"\n\nGenerate responses with temperature={temp} (creativity level).",
"answer_guidelines": base_template.answer_guidelines + f"\n\nAdjust response creativity to temperature={temp}."
}
variation_id = self.create_variation(
base_template=base_template,
query_type=base_query_type,
variation_name=f"temp_{temp}",
modifications=temp_modification,
description=f"Temperature variation with {temp} creativity level"
)
variation_ids.append(variation_id)
return variation_ids
def create_length_variations(
self,
base_query_type: QueryType,
length_styles: List[str] = ["concise", "detailed", "comprehensive"]
) -> List[str]:
"""
Create variations with different response length preferences.
Args:
base_query_type: Query type to create variations for
length_styles: List of length styles to test
Returns:
List of variation IDs
"""
base_template = TechnicalPromptTemplates.get_template_for_query("")
if base_query_type != QueryType.GENERAL:
template_map = {
QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
}
base_template = template_map[base_query_type]()
length_prompts = {
"concise": "Be concise and focus on essential information only. Aim for 2-3 sentences per point.",
"detailed": "Provide detailed explanations with examples. Aim for comprehensive coverage.",
"comprehensive": "Provide exhaustive detail with multiple examples, edge cases, and related concepts."
}
variation_ids = []
for style in length_styles:
length_modification = {
"answer_guidelines": base_template.answer_guidelines + f"\n\nResponse style: {length_prompts[style]}"
}
variation_id = self.create_variation(
base_template=base_template,
query_type=base_query_type,
variation_name=f"length_{style}",
modifications=length_modification,
description=f"Length variation with {style} response style"
)
variation_ids.append(variation_id)
return variation_ids
def create_citation_variations(
self,
base_query_type: QueryType,
citation_styles: List[str] = ["minimal", "standard", "extensive"]
) -> List[str]:
"""
Create variations with different citation requirements.
Args:
base_query_type: Query type to create variations for
citation_styles: List of citation styles to test
Returns:
List of variation IDs
"""
base_template = TechnicalPromptTemplates.get_template_for_query("")
if base_query_type != QueryType.GENERAL:
template_map = {
QueryType.DEFINITION: TechnicalPromptTemplates.get_definition_template,
QueryType.IMPLEMENTATION: TechnicalPromptTemplates.get_implementation_template,
QueryType.COMPARISON: TechnicalPromptTemplates.get_comparison_template,
QueryType.SPECIFICATION: TechnicalPromptTemplates.get_specification_template,
QueryType.CODE_EXAMPLE: TechnicalPromptTemplates.get_code_example_template,
QueryType.HARDWARE_CONSTRAINT: TechnicalPromptTemplates.get_hardware_constraint_template,
QueryType.TROUBLESHOOTING: TechnicalPromptTemplates.get_troubleshooting_template,
}
base_template = template_map[base_query_type]()
citation_prompts = {
"minimal": "Use [chunk_X] citations only for direct quotes or specific claims.",
"standard": "Include [chunk_X] citations for each major point or claim.",
"extensive": "Provide [chunk_X] citations for every statement. Use multiple citations per point where relevant."
}
variation_ids = []
for style in citation_styles:
citation_modification = {
"answer_guidelines": base_template.answer_guidelines + f"\n\nCitation style: {citation_prompts[style]}"
}
variation_id = self.create_variation(
base_template=base_template,
query_type=base_query_type,
variation_name=f"citation_{style}",
modifications=citation_modification,
description=f"Citation variation with {style} citation requirements"
)
variation_ids.append(variation_id)
return variation_ids
def setup_experiment(
self,
experiment_name: str,
variation_ids: List[str],
test_queries: List[str]
) -> str:
"""
Set up a new A/B test experiment.
Args:
experiment_name: Name of the experiment
variation_ids: List of variation IDs to test
test_queries: List of test queries
Returns:
Experiment ID
"""
experiment_id = f"exp_{experiment_name}_{int(time.time())}"
experiment_config = {
"experiment_id": experiment_id,
"name": experiment_name,
"variation_ids": variation_ids,
"test_queries": test_queries,
"created_at": time.time(),
"status": "active"
}
self.active_experiments[experiment_id] = variation_ids
# Save experiment config
experiment_file = self.experiment_dir / f"{experiment_id}.json"
with open(experiment_file, 'w') as f:
json.dump(experiment_config, f, indent=2)
self.logger.info(f"Created experiment: {experiment_id}")
return experiment_id
def record_test_result(
self,
variation_id: str,
query: str,
query_type: QueryType,
response_time: float,
confidence_score: float,
citation_count: int,
answer_length: int,
technical_accuracy: Optional[float] = None,
user_satisfaction: Optional[float] = None,
metadata: Optional[Dict[str, Any]] = None
) -> None:
"""
Record a test result for analysis.
Args:
variation_id: ID of the variation tested
query: The query that was tested
query_type: Type of the query
response_time: Response time in seconds
confidence_score: Confidence score (0-1)
citation_count: Number of citations in response
answer_length: Length of answer in characters
technical_accuracy: Optional technical accuracy score (0-1)
user_satisfaction: Optional user satisfaction score (0-1)
metadata: Optional additional metadata
"""
result = TestResult(
variation_id=variation_id,
query=query,
query_type=query_type,
response_time=response_time,
confidence_score=confidence_score,
citation_count=citation_count,
answer_length=answer_length,
technical_accuracy=technical_accuracy,
user_satisfaction=user_satisfaction,
metadata=metadata or {}
)
self.test_results.append(result)
self._save_test_result(result)
self.logger.info(f"Recorded test result for variation: {variation_id}")
def analyze_variations(
self,
variation_a: str,
variation_b: str,
metric: OptimizationMetric,
min_samples: int = 10
) -> ComparisonResult:
"""
Analyze performance difference between two variations.
Args:
variation_a: First variation ID
variation_b: Second variation ID
metric: Metric to compare
min_samples: Minimum samples required for analysis
Returns:
Comparison result with statistical analysis
"""
# Filter results for each variation
results_a = [r for r in self.test_results if r.variation_id == variation_a]
results_b = [r for r in self.test_results if r.variation_id == variation_b]
if len(results_a) < min_samples or len(results_b) < min_samples:
raise ValueError(f"Insufficient samples. Need at least {min_samples} for each variation.")
# Extract metric values
values_a = self._extract_metric_values(results_a, metric)
values_b = self._extract_metric_values(results_b, metric)
# Calculate statistics
mean_a = np.mean(values_a)
mean_b = np.mean(values_b)
# Calculate improvement percentage
improvement = ((mean_b - mean_a) / mean_a) * 100
# Simple t-test (normally would use scipy.stats.ttest_ind)
# For now, using basic statistical comparison
std_a = np.std(values_a)
std_b = np.std(values_b)
n_a = len(values_a)
n_b = len(values_b)
# Basic p-value estimation (simplified)
pooled_std = np.sqrt(((n_a - 1) * std_a**2 + (n_b - 1) * std_b**2) / (n_a + n_b - 2))
t_stat = (mean_b - mean_a) / (pooled_std * np.sqrt(1/n_a + 1/n_b))
p_value = 2 * (1 - abs(t_stat) / (abs(t_stat) + 1)) # Rough approximation
# Confidence interval (simplified)
margin_of_error = 1.96 * pooled_std * np.sqrt(1/n_a + 1/n_b)
ci_lower = (mean_b - mean_a) - margin_of_error
ci_upper = (mean_b - mean_a) + margin_of_error
# Determine significance
is_significant = p_value < 0.05
# Generate recommendation
if is_significant:
if improvement > 0:
recommendation = f"Variation B shows significant improvement ({improvement:.1f}%). Recommend adopting variation B."
else:
recommendation = f"Variation A shows significant improvement ({-improvement:.1f}%). Recommend keeping variation A."
else:
recommendation = f"No significant difference detected (p={p_value:.3f}). More data needed or variations are equivalent."
return ComparisonResult(
variation_a=variation_a,
variation_b=variation_b,
metric=metric,
a_mean=mean_a,
b_mean=mean_b,
improvement_percent=improvement,
p_value=p_value,
confidence_interval=(ci_lower, ci_upper),
is_significant=is_significant,
sample_size=min(n_a, n_b),
recommendation=recommendation
)
def get_best_variation(
self,
query_type: QueryType,
metric: OptimizationMetric,
min_samples: int = 10
) -> Optional[str]:
"""
Get the best performing variation for a query type and metric.
Args:
query_type: Type of query
metric: Metric to optimize for
min_samples: Minimum samples required
Returns:
Best variation ID or None if insufficient data
"""
# Filter results by query type
relevant_results = [r for r in self.test_results if r.query_type == query_type]
# Group by variation
variation_performance = defaultdict(list)
for result in relevant_results:
variation_performance[result.variation_id].append(result)
# Calculate mean performance for each variation
best_variation = None
best_score = None
for variation_id, results in variation_performance.items():
if len(results) >= min_samples:
values = self._extract_metric_values(results, metric)
mean_score = np.mean(values)
if best_score is None or mean_score > best_score:
best_score = mean_score
best_variation = variation_id
return best_variation
def generate_optimization_report(
self,
experiment_id: str,
output_file: Optional[str] = None
) -> Dict[str, Any]:
"""
Generate a comprehensive optimization report.
Args:
experiment_id: Experiment to analyze
output_file: Optional file to save report
Returns:
Report dictionary
"""
if experiment_id not in self.active_experiments:
raise ValueError(f"Experiment {experiment_id} not found")
variation_ids = self.active_experiments[experiment_id]
experiment_results = [r for r in self.test_results if r.variation_id in variation_ids]
if not experiment_results:
raise ValueError(f"No results found for experiment {experiment_id}")
# Analyze each metric
metrics = [
OptimizationMetric.RESPONSE_TIME,
OptimizationMetric.CONFIDENCE_SCORE,
OptimizationMetric.CITATION_COUNT,
OptimizationMetric.ANSWER_LENGTH
]
report = {
"experiment_id": experiment_id,
"variations_tested": len(variation_ids),
"total_tests": len(experiment_results),
"analysis_date": time.time(),
"metric_analysis": {},
"recommendations": []
}
# Analyze each metric across variations
for metric in metrics:
metric_data = {}
for variation_id in variation_ids:
var_results = [r for r in experiment_results if r.variation_id == variation_id]
if var_results:
values = self._extract_metric_values(var_results, metric)
metric_data[variation_id] = {
"mean": np.mean(values),
"std": np.std(values),
"count": len(values)
}
report["metric_analysis"][metric.value] = metric_data
# Generate recommendations
for metric in metrics:
best_variation = self.get_best_variation(
query_type=QueryType.GENERAL, # Could be made more specific
metric=metric,
min_samples=5
)
if best_variation:
report["recommendations"].append({
"metric": metric.value,
"best_variation": best_variation,
"variation_name": self.variations[best_variation].name
})
# Save report if requested
if output_file:
with open(output_file, 'w') as f:
json.dump(report, f, indent=2)
return report
def _extract_metric_values(self, results: List[TestResult], metric: OptimizationMetric) -> List[float]:
"""Extract metric values from test results."""
values = []
for result in results:
if metric == OptimizationMetric.RESPONSE_TIME:
values.append(result.response_time)
elif metric == OptimizationMetric.CONFIDENCE_SCORE:
values.append(result.confidence_score)
elif metric == OptimizationMetric.CITATION_COUNT:
values.append(float(result.citation_count))
elif metric == OptimizationMetric.ANSWER_LENGTH:
values.append(float(result.answer_length))
elif metric == OptimizationMetric.TECHNICAL_ACCURACY and result.technical_accuracy is not None:
values.append(result.technical_accuracy)
elif metric == OptimizationMetric.USER_SATISFACTION and result.user_satisfaction is not None:
values.append(result.user_satisfaction)
return values
def _load_experiments(self) -> None:
"""Load existing experiments from disk."""
if not self.experiment_dir.exists():
return
for file_path in self.experiment_dir.glob("*.json"):
if file_path.name.startswith("exp_"):
with open(file_path, 'r') as f:
config = json.load(f)
self.active_experiments[config["experiment_id"]] = config["variation_ids"]
# Load variations and results
for file_path in self.experiment_dir.glob("variation_*.json"):
with open(file_path, 'r') as f:
var_data = json.load(f)
variation = PromptVariation(**var_data)
self.variations[variation.variation_id] = variation
for file_path in self.experiment_dir.glob("result_*.json"):
with open(file_path, 'r') as f:
result_data = json.load(f)
result = TestResult(**result_data)
self.test_results.append(result)
def _save_variation(self, variation: PromptVariation) -> None:
"""Save variation to disk."""
file_path = self.experiment_dir / f"variation_{variation.variation_id}.json"
var_dict = asdict(variation)
# Convert template to dict
var_dict["template"] = asdict(variation.template)
var_dict["query_type"] = variation.query_type.value
with open(file_path, 'w') as f:
json.dump(var_dict, f, indent=2)
def _save_test_result(self, result: TestResult) -> None:
"""Save test result to disk."""
file_path = self.experiment_dir / f"result_{int(result.timestamp)}.json"
result_dict = asdict(result)
result_dict["query_type"] = result.query_type.value
with open(file_path, 'w') as f:
json.dump(result_dict, f, indent=2)
# Example usage
if __name__ == "__main__":
# Initialize optimizer
optimizer = PromptOptimizer()
# Create temperature variations for implementation queries
temp_variations = optimizer.create_temperature_variations(
base_query_type=QueryType.IMPLEMENTATION,
temperatures=[0.3, 0.7]
)
# Create length variations for definition queries
length_variations = optimizer.create_length_variations(
base_query_type=QueryType.DEFINITION,
length_styles=["concise", "detailed"]
)
# Setup experiment
test_queries = [
"How do I implement a timer interrupt in RISC-V?",
"What is the difference between machine mode and user mode?",
"Configure GPIO pins for input/output operations"
]
experiment_id = optimizer.setup_experiment(
experiment_name="temperature_vs_length",
variation_ids=temp_variations + length_variations,
test_queries=test_queries
)
print(f"Created experiment: {experiment_id}")
print(f"Variations: {len(temp_variations + length_variations)}")
print(f"Test queries: {len(test_queries)}")