Arthur Passuello
initial commit
5e1a30c
"""
Base Response Assembler Implementation.
This module provides concrete base functionality for response assembly
components, implementing common patterns for Answer object creation and metadata handling.
"""
import time
import logging
from typing import Dict, Any, List, Optional
from pathlib import Path
import sys
# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent.parent
sys.path.append(str(project_root))
from ..base import ResponseAssembler, ContextSelection, QueryAnalysis
from src.core.interfaces import Answer, Document
logger = logging.getLogger(__name__)
class BaseResponseAssembler(ResponseAssembler):
"""
Base implementation providing common functionality for all response assemblers.
This class implements common patterns like Answer object creation,
metadata handling, and performance tracking that can be reused by
concrete assembler implementations.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""
Initialize base response assembler with configuration.
Args:
config: Configuration dictionary
"""
self._config = config or {}
self._performance_metrics = {
'total_assemblies': 0,
'average_time_ms': 0.0,
'failed_assemblies': 0,
'average_metadata_fields': 0.0
}
# Assembly configuration
self._include_sources = self._config.get('include_sources', True)
self._include_metadata = self._config.get('include_metadata', True)
self._format_citations = self._config.get('format_citations', True)
self._max_source_length = self._config.get('max_source_length', 500)
# Configure based on provided settings
self.configure(self._config)
logger.debug(f"Initialized {self.__class__.__name__} with config: {self._config}")
def assemble(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Assemble Answer object with performance tracking and error handling.
Args:
query: Original user query
answer_text: Generated answer text
context: Selected context from ContextSelector
confidence: Answer confidence score
query_analysis: Optional query analysis metadata
generation_metadata: Optional metadata from answer generation
Returns:
Complete Answer object with sources and metadata
Raises:
ValueError: If required parameters are missing
RuntimeError: If assembly fails
"""
# Validate inputs
if not answer_text or not answer_text.strip():
raise ValueError("Answer text cannot be empty")
if not 0.0 <= confidence <= 1.0:
logger.warning(f"Invalid confidence {confidence}, clamping to [0,1]")
confidence = max(0.0, min(1.0, confidence))
start_time = time.time()
try:
# Perform actual assembly (implemented by subclasses)
result = self._assemble_answer(
query, answer_text, context, confidence, query_analysis, generation_metadata
)
# Enhance with Epic 2 features if available
if query_analysis and 'epic2_features' in query_analysis.metadata:
result = self._enhance_with_epic2_features(result, query_analysis)
# Track performance
assembly_time = time.time() - start_time
metadata_field_count = len(result.metadata) if result.metadata else 0
self._update_performance_metrics(assembly_time, metadata_field_count, success=True)
logger.debug(f"Answer assembly completed in {assembly_time*1000:.1f}ms")
return result
except Exception as e:
assembly_time = time.time() - start_time
self._update_performance_metrics(assembly_time, 0, success=False)
logger.error(f"Answer assembly failed after {assembly_time*1000:.1f}ms: {e}")
raise RuntimeError(f"Answer assembly failed: {e}") from e
def _assemble_answer(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Perform actual answer assembly (must be implemented by subclasses).
Args:
query: Validated query string
answer_text: Validated answer text
context: Context selection
confidence: Validated confidence score
query_analysis: Optional query analysis
generation_metadata: Optional generation metadata
Returns:
Complete Answer object
"""
raise NotImplementedError("Subclasses must implement _assemble_answer")
def get_supported_formats(self) -> List[str]:
"""
Return base formats supported by all assemblers.
Subclasses should override and extend this list.
Returns:
List of format names
"""
return ["standard"]
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the assembler with provided settings.
Args:
config: Configuration dictionary
"""
self._config.update(config)
# Apply common configuration
self._include_sources = config.get('include_sources', self._include_sources)
self._include_metadata = config.get('include_metadata', self._include_metadata)
self._format_citations = config.get('format_citations', self._format_citations)
self._max_source_length = config.get('max_source_length', self._max_source_length)
if 'enable_metrics' in config:
self._track_metrics = config['enable_metrics']
else:
self._track_metrics = True # Default enable metrics
def get_performance_metrics(self) -> Dict[str, Any]:
"""
Get performance metrics for this assembler.
Returns:
Dictionary with performance statistics
"""
return self._performance_metrics.copy()
def _update_performance_metrics(
self,
assembly_time: float,
metadata_fields: int,
success: bool
) -> None:
"""
Update internal performance metrics.
Args:
assembly_time: Time taken for assembly in seconds
metadata_fields: Number of metadata fields created
success: Whether assembly succeeded
"""
if not self._track_metrics:
return
self._performance_metrics['total_assemblies'] += 1
if success:
# Update average time using incremental formula
total_successful = self._performance_metrics['total_assemblies'] - self._performance_metrics['failed_assemblies']
current_avg_time = self._performance_metrics['average_time_ms']
self._performance_metrics['average_time_ms'] = (
(current_avg_time * (total_successful - 1) + assembly_time * 1000) / total_successful
)
# Update average metadata fields
current_avg_fields = self._performance_metrics['average_metadata_fields']
self._performance_metrics['average_metadata_fields'] = (
(current_avg_fields * (total_successful - 1) + metadata_fields) / total_successful
)
else:
self._performance_metrics['failed_assemblies'] += 1
def _create_sources_list(self, context: ContextSelection) -> List[Document]:
"""
Create sources list from context selection.
Args:
context: Context selection with documents
Returns:
List of source documents
"""
if not self._include_sources or not context.selected_documents:
return []
sources = []
for doc in context.selected_documents:
# Optionally truncate very long documents in sources
if self._max_source_length > 0 and len(doc.content) > self._max_source_length:
# Create a truncated copy
truncated_content = doc.content[:self._max_source_length] + "..."
# Copy metadata and add source info there
truncated_metadata = doc.metadata.copy()
if hasattr(doc, 'source'):
truncated_metadata['source'] = doc.source
elif 'source' not in truncated_metadata:
truncated_metadata['source'] = truncated_metadata.get('source', 'unknown')
if hasattr(doc, 'chunk_id'):
truncated_metadata['chunk_id'] = doc.chunk_id
elif 'chunk_id' not in truncated_metadata:
truncated_metadata['chunk_id'] = truncated_metadata.get('chunk_id', 'unknown')
truncated_doc = Document(
content=truncated_content,
metadata=truncated_metadata,
embedding=None # Don't include large embedding in sources
)
sources.append(truncated_doc)
else:
# Create clean copy without embedding for sources
clean_metadata = doc.metadata.copy()
if hasattr(doc, 'source'):
clean_metadata['source'] = doc.source
elif 'source' not in clean_metadata:
clean_metadata['source'] = clean_metadata.get('source', 'unknown')
if hasattr(doc, 'chunk_id'):
clean_metadata['chunk_id'] = doc.chunk_id
elif 'chunk_id' not in clean_metadata:
clean_metadata['chunk_id'] = clean_metadata.get('chunk_id', 'unknown')
clean_doc = Document(
content=doc.content,
metadata=clean_metadata,
embedding=None
)
sources.append(clean_doc)
return sources
def _create_base_metadata(
self,
query: str,
context: ContextSelection,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""
Create base metadata that all assemblers include.
Args:
query: Original query
context: Context selection
query_analysis: Optional query analysis
generation_metadata: Optional generation metadata
Returns:
Base metadata dictionary
"""
metadata = {}
if self._include_metadata:
# Query information
metadata['query'] = query
metadata['query_length'] = len(query)
# Context information
metadata['retrieved_docs'] = len(context.selected_documents)
metadata['total_tokens'] = context.total_tokens
metadata['selection_strategy'] = context.selection_strategy
# Context quality metrics
if hasattr(context, 'diversity_score') and context.diversity_score is not None:
metadata['diversity_score'] = context.diversity_score
if hasattr(context, 'relevance_score') and context.relevance_score is not None:
metadata['relevance_score'] = context.relevance_score
# Query analysis information
if query_analysis:
metadata['query_complexity'] = query_analysis.complexity_score
metadata['query_intent'] = query_analysis.intent_category
metadata['technical_terms_count'] = len(query_analysis.technical_terms)
metadata['entities_count'] = len(query_analysis.entities)
# Generation information
if generation_metadata:
# Include relevant generation metadata
for key in ['generation_time', 'model', 'provider', 'temperature']:
if key in generation_metadata:
metadata[key] = generation_metadata[key]
# Assembly information
metadata['assembler_type'] = self._get_assembler_type()
return metadata
def _get_assembler_type(self) -> str:
"""
Get the type name of this assembler.
Returns:
Assembler type string
"""
return self.__class__.__name__.lower().replace('assembler', '')
def _format_answer_text(self, answer_text: str) -> str:
"""
Format answer text (can be overridden by subclasses).
Args:
answer_text: Raw answer text
Returns:
Formatted answer text
"""
# Base implementation just cleans whitespace
return answer_text.strip()
def _extract_citations_from_text(self, text: str) -> List[str]:
"""
Extract citation references from answer text.
Args:
text: Answer text to analyze
Returns:
List of citation references found
"""
import re
citations = []
# Common citation patterns
patterns = [
r'\[Document \d+\]', # [Document 1]
r'\[chunk_\d+\]', # [chunk_1]
r'\[\d+\]', # [1]
r'\[Document \d+, Page \d+\]' # [Document 1, Page 5]
]
for pattern in patterns:
matches = re.findall(pattern, text)
citations.extend(matches)
# Remove duplicates while preserving order
unique_citations = []
seen = set()
for citation in citations:
if citation not in seen:
seen.add(citation)
unique_citations.append(citation)
return unique_citations
def _enhance_with_epic2_features(self, answer: Answer, query_analysis: QueryAnalysis) -> Answer:
"""
Enhance Answer object with Epic 2 feature information.
Args:
answer: Base Answer object
query_analysis: Query analysis with Epic 2 features
Returns:
Enhanced Answer object with Epic 2 metadata
"""
epic2_features = query_analysis.metadata.get('epic2_features', {})
# Add Epic 2 features to metadata
if answer.metadata is None:
answer.metadata = {}
answer.metadata['epic2_features'] = epic2_features
# Add neural reranking information if enabled
if epic2_features.get('neural_reranking', {}).get('enabled'):
neural_info = epic2_features['neural_reranking']
answer.metadata['neural_reranking'] = {
'enabled': True,
'benefit_score': neural_info.get('benefit_score', 0.0),
'reason': neural_info.get('reason', 'Neural reranking applied'),
'performance_impact': 'Enhanced semantic matching'
}
# Add graph enhancement information if enabled
if epic2_features.get('graph_enhancement', {}).get('enabled'):
graph_info = epic2_features['graph_enhancement']
answer.metadata['graph_enhancement'] = {
'enabled': True,
'benefit_score': graph_info.get('benefit_score', 0.0),
'reason': graph_info.get('reason', 'Graph enhancement applied'),
'performance_impact': 'Enhanced entity relationships'
}
# Add hybrid weights optimization
if 'hybrid_weights' in epic2_features:
hybrid_weights = epic2_features['hybrid_weights']
answer.metadata['hybrid_weights'] = hybrid_weights
answer.metadata['retrieval_optimization'] = {
'dense_weight': hybrid_weights.get('dense_weight', 0.6),
'sparse_weight': hybrid_weights.get('sparse_weight', 0.3),
'graph_weight': hybrid_weights.get('graph_weight', 0.1),
'optimization_reason': 'Weights optimized based on query characteristics'
}
# Add performance predictions
if 'performance_prediction' in epic2_features:
performance = epic2_features['performance_prediction']
answer.metadata['performance_prediction'] = {
'estimated_latency_ms': performance.get('estimated_latency_ms', 500),
'quality_improvement': performance.get('quality_improvement', 0.0),
'resource_impact': performance.get('resource_impact', 'low'),
'prediction_confidence': 'Medium'
}
# Add Epic 2 processing summary
epic2_summary = {
'features_applied': [],
'total_benefit_score': 0.0,
'processing_overhead_ms': 0
}
for feature_name, feature_data in epic2_features.items():
if isinstance(feature_data, dict) and feature_data.get('enabled'):
epic2_summary['features_applied'].append(feature_name)
epic2_summary['total_benefit_score'] += feature_data.get('benefit_score', 0.0)
# Estimate processing overhead
if feature_name == 'neural_reranking':
epic2_summary['processing_overhead_ms'] += 200
elif feature_name == 'graph_enhancement':
epic2_summary['processing_overhead_ms'] += 100
answer.metadata['epic2_summary'] = epic2_summary
# Enhance answer text with Epic 2 feature indicators (if configured)
if self._config.get('include_epic2_indicators', False):
answer = self._add_epic2_indicators_to_text(answer, epic2_features)
return answer
def _add_epic2_indicators_to_text(self, answer: Answer, epic2_features: Dict[str, Any]) -> Answer:
"""
Add Epic 2 feature indicators to answer text.
Args:
answer: Answer object to enhance
epic2_features: Epic 2 feature information
Returns:
Answer with enhanced text
"""
indicators = []
if epic2_features.get('neural_reranking', {}).get('enabled'):
indicators.append("🧠 Neural reranking applied for enhanced semantic matching")
if epic2_features.get('graph_enhancement', {}).get('enabled'):
indicators.append("🌐 Graph enhancement applied for entity relationships")
if indicators and self._config.get('epic2_indicator_placement', 'footer') == 'footer':
# Add indicators as footer
footer_text = "\n\n---\n" + "\n".join(f"β€’ {indicator}" for indicator in indicators)
answer.text = answer.text + footer_text
elif indicators and self._config.get('epic2_indicator_placement', 'footer') == 'header':
# Add indicators as header
header_text = "\n".join(f"β€’ {indicator}" for indicator in indicators) + "\n\n---\n"
answer.text = header_text + answer.text
return answer