Arthur Passuello
initial commit
5e1a30c
"""
Base interfaces and abstract classes for Query Processor components.
This module defines the core interfaces that all Query Processor sub-components
must implement, following the established architecture patterns from other components.
Key Design Principles:
- Abstract base classes define clear contracts
- Minimal required methods for flexibility
- Configuration-driven component selection
- Consistent error handling and metrics
- Type hints for better IDE support
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional, Union
from pathlib import Path
import sys
# Add project paths for imports
project_root = Path(__file__).parent.parent.parent.parent
sys.path.append(str(project_root))
from src.core.interfaces import Document, Answer, QueryOptions
@dataclass
class QueryAnalysis:
"""Results from query analysis containing query characteristics."""
query: str
complexity_score: float = 0.0
technical_terms: List[str] = field(default_factory=list)
entities: List[str] = field(default_factory=list)
intent_category: str = "general"
suggested_k: int = 5
confidence: float = 0.0
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class ContextSelection:
"""Results from context selection containing selected documents."""
selected_documents: List[Document]
total_tokens: int = 0
selection_strategy: str = "unknown"
diversity_score: float = 0.0
relevance_score: float = 0.0
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class QueryProcessorConfig:
"""Configuration for Query Processor and its sub-components."""
# Query Analyzer configuration
analyzer_type: str = "nlp"
analyzer_config: Dict[str, Any] = field(default_factory=dict)
# Context Selector configuration
selector_type: str = "mmr"
selector_config: Dict[str, Any] = field(default_factory=dict)
# Response Assembler configuration
assembler_type: str = "rich"
assembler_config: Dict[str, Any] = field(default_factory=dict)
# Workflow configuration
default_k: int = 5
max_tokens: int = 2048
enable_fallback: bool = True
timeout_seconds: float = 30.0
class QueryAnalyzer(ABC):
"""
Abstract base class for query analysis components.
Query analyzers examine user queries to extract characteristics that
can optimize the retrieval and generation process.
"""
@abstractmethod
def analyze(self, query: str) -> QueryAnalysis:
"""
Analyze a query and return its characteristics.
Args:
query: User query string
Returns:
QueryAnalysis with extracted characteristics
Raises:
ValueError: If query is empty or invalid
RuntimeError: If analysis fails
"""
pass
@abstractmethod
def get_supported_features(self) -> List[str]:
"""
Return list of analysis features this analyzer supports.
Returns:
List of feature names (e.g., ["entities", "complexity", "intent"])
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the analyzer with provided settings.
Args:
config: Configuration dictionary
"""
pass
class ContextSelector(ABC):
"""
Abstract base class for context selection components.
Context selectors choose optimal documents from retrieval results
to maximize answer quality within token constraints.
"""
@abstractmethod
def select(
self,
query: str,
documents: List[Document],
max_tokens: int,
query_analysis: Optional[QueryAnalysis] = None
) -> ContextSelection:
"""
Select optimal context documents for answer generation.
Args:
query: Original user query
documents: Retrieved documents to select from
max_tokens: Maximum token limit for selected context
query_analysis: Optional query analysis for optimization
Returns:
ContextSelection with selected documents and metadata
Raises:
ValueError: If parameters are invalid
RuntimeError: If selection fails
"""
pass
@abstractmethod
def estimate_tokens(self, text: str) -> int:
"""
Estimate token count for text (rough approximation).
Args:
text: Text to estimate tokens for
Returns:
Estimated token count
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the selector with provided settings.
Args:
config: Configuration dictionary
"""
pass
class ResponseAssembler(ABC):
"""
Abstract base class for response assembly components.
Response assemblers format the final Answer object with consistent
structure, citations, and metadata.
"""
@abstractmethod
def assemble(
self,
query: str,
answer_text: str,
context: ContextSelection,
confidence: float,
query_analysis: Optional[QueryAnalysis] = None,
generation_metadata: Optional[Dict[str, Any]] = None
) -> Answer:
"""
Assemble final Answer object with proper formatting.
Args:
query: Original user query
answer_text: Generated answer text
context: Selected context from ContextSelector
confidence: Answer confidence score
query_analysis: Optional query analysis metadata
generation_metadata: Optional metadata from answer generation
Returns:
Complete Answer object with sources and metadata
Raises:
ValueError: If required parameters are missing
RuntimeError: If assembly fails
"""
pass
@abstractmethod
def get_supported_formats(self) -> List[str]:
"""
Return list of output formats this assembler supports.
Returns:
List of format names (e.g., ["standard", "rich", "streaming"])
"""
pass
def configure(self, config: Dict[str, Any]) -> None:
"""
Configure the assembler with provided settings.
Args:
config: Configuration dictionary
"""
pass
class QueryProcessor(ABC):
"""
Abstract base class for the main Query Processor component.
The Query Processor orchestrates the complete query workflow:
analyze → retrieve → select → generate → assemble.
"""
@abstractmethod
def process(self, query: str, options: Optional[QueryOptions] = None) -> Answer:
"""
Process a query end-to-end and return a complete answer.
Args:
query: User query string
options: Optional query processing options
Returns:
Complete Answer object with text, sources, and metadata
Raises:
ValueError: If query is empty or options are invalid
RuntimeError: If processing pipeline fails
"""
pass
@abstractmethod
def analyze_query(self, query: str) -> QueryAnalysis:
"""
Analyze query characteristics without full processing.
Args:
query: User query string
Returns:
QueryAnalysis with extracted characteristics
"""
pass
@abstractmethod
def get_health_status(self) -> Dict[str, Any]:
"""
Get health status of query processor and sub-components.
Returns:
Dictionary with health information
"""
pass
def configure(self, config: QueryProcessorConfig) -> None:
"""
Configure the query processor and all sub-components.
Args:
config: Complete configuration object
"""
pass
# Configuration validation utilities
def validate_config(config: Dict[str, Any]) -> List[str]:
"""
Validate query processor configuration.
Args:
config: Configuration dictionary to validate
Returns:
List of validation error messages (empty if valid)
"""
errors = []
# Check required fields
required_fields = ['analyzer_type', 'selector_type', 'assembler_type']
for field in required_fields:
if field not in config:
errors.append(f"Missing required field: {field}")
# Validate known types
valid_analyzers = ['nlp', 'rule_based', 'llm']
if config.get('analyzer_type') not in valid_analyzers:
errors.append(f"Unknown analyzer_type. Valid options: {valid_analyzers}")
valid_selectors = ['mmr', 'diversity', 'token_limit']
if config.get('selector_type') not in valid_selectors:
errors.append(f"Unknown selector_type. Valid options: {valid_selectors}")
valid_assemblers = ['standard', 'rich', 'streaming']
if config.get('assembler_type') not in valid_assemblers:
errors.append(f"Unknown assembler_type. Valid options: {valid_assemblers}")
# Validate numeric ranges
if 'default_k' in config and (config['default_k'] < 1 or config['default_k'] > 50):
errors.append("default_k must be between 1 and 50")
if 'max_tokens' in config and (config['max_tokens'] < 100 or config['max_tokens'] > 8192):
errors.append("max_tokens must be between 100 and 8192")
return errors
# Performance tracking utilities
class QueryProcessorMetrics:
"""Utility class for tracking query processor performance metrics."""
def __init__(self):
self.total_queries = 0
self.successful_queries = 0
self.failed_queries = 0
self.average_latency = 0.0
self.phase_latencies = {
'analysis': 0.0,
'retrieval': 0.0,
'selection': 0.0,
'generation': 0.0,
'assembly': 0.0
}
def record_query(self, success: bool, latency: float, phase_times: Dict[str, float]):
"""Record metrics for a completed query."""
self.total_queries += 1
if success:
self.successful_queries += 1
else:
self.failed_queries += 1
# Update average latency
self.average_latency = (
(self.average_latency * (self.total_queries - 1) + latency) / self.total_queries
)
# Update phase latencies
for phase, time_taken in phase_times.items():
if phase in self.phase_latencies:
current_avg = self.phase_latencies[phase]
self.phase_latencies[phase] = (
(current_avg * (self.total_queries - 1) + time_taken) / self.total_queries
)
def get_stats(self) -> Dict[str, Any]:
"""Get current performance statistics."""
success_rate = self.successful_queries / self.total_queries if self.total_queries > 0 else 0.0
return {
'total_queries': self.total_queries,
'success_rate': success_rate,
'average_latency_ms': self.average_latency * 1000,
'phase_latencies_ms': {k: v * 1000 for k, v in self.phase_latencies.items()},
'failed_queries': self.failed_queries
}