enhanced-rag-demo / src /evaluation /retrieval_evaluator.py
Arthur Passuello
initial commit
5e1a30c
#!/usr/bin/env python3
"""
Retrieval Quality Evaluator using RAGAS Framework
=================================================
Implements proper RAG evaluation metrics focused on retrieval quality:
- Context Precision: relevant_docs / total_retrieved_docs
- Context Recall: relevant_docs / total_relevant_docs
- Mean Reciprocal Rank (MRR): ranking quality
- NDCG@K: position-weighted relevance scoring
This replaces the inadequate 0.8000 "quality score" with meaningful metrics.
"""
import sys
import time
import logging
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import numpy as np
from dataclasses import dataclass
# Add project root to path
project_root = Path(__file__).parent.parent.parent
sys.path.append(str(project_root))
from src.core.platform_orchestrator import PlatformOrchestrator
from src.core.interfaces import Document
logger = logging.getLogger(__name__)
@dataclass
class QueryResult:
"""Result of a single query evaluation."""
query_id: str
query: str
retrieved_docs: List[Dict[str, Any]]
ground_truth_relevant: List[str] # Document IDs that should be relevant
context_precision: float
context_recall: float
mrr: float
ndcg_at_5: float
response_time: float
@dataclass
class RetrievalEvaluationResults:
"""Complete evaluation results across all queries."""
config_name: str
query_results: List[QueryResult]
avg_context_precision: float
avg_context_recall: float
avg_mrr: float
avg_ndcg_at_5: float
avg_response_time: float
total_queries: int
class RetrievalQualityEvaluator:
"""
Evaluator for retrieval quality using proper RAG metrics.
Focuses on the key question: Are we retrieving the RIGHT documents?
"""
def __init__(self, platform_orchestrator: PlatformOrchestrator):
"""Initialize with a configured platform orchestrator."""
self.platform_orchestrator = platform_orchestrator
self.indexed_documents = []
def index_documents(self, documents: List[Document]) -> None:
"""Index documents for retrieval evaluation."""
logger.info(f"Indexing {len(documents)} documents for evaluation")
self.indexed_documents = documents
self.platform_orchestrator.index_documents(documents)
logger.info("Documents indexed successfully")
def calculate_context_precision(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Context Precision: relevant_retrieved / total_retrieved
Measures signal-to-noise ratio in retrieval results.
Higher is better - indicates fewer irrelevant documents retrieved.
"""
if not retrieved_docs:
return 0.0
relevant_retrieved = sum(1 for doc in retrieved_docs
if doc.get('source', '') in relevant_doc_ids)
return relevant_retrieved / len(retrieved_docs)
def calculate_context_recall(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Context Recall: relevant_retrieved / total_relevant
Measures coverage of relevant information.
Higher is better - indicates we found most relevant documents.
"""
if not relevant_doc_ids:
return 1.0 # No relevant docs to find
retrieved_doc_ids = set(doc.get('source', '') for doc in retrieved_docs)
relevant_retrieved = sum(1 for doc_id in relevant_doc_ids
if doc_id in retrieved_doc_ids)
return relevant_retrieved / len(relevant_doc_ids)
def calculate_mrr(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str]) -> float:
"""
Calculate Mean Reciprocal Rank: 1/rank_of_first_relevant_doc
Measures ranking quality - how quickly we find relevant documents.
Higher is better - indicates relevant docs appear early in ranking.
"""
for rank, doc in enumerate(retrieved_docs, 1):
if doc.get('source', '') in relevant_doc_ids:
return 1.0 / rank
return 0.0 # No relevant documents found
def calculate_ndcg_at_k(self, retrieved_docs: List[Dict], relevant_doc_ids: List[str], k: int = 5) -> float:
"""
Calculate Normalized Discounted Cumulative Gain at K.
Measures ranking quality with position weighting.
Higher positions get higher weights, relevant docs should appear early.
"""
if not retrieved_docs or not relevant_doc_ids:
return 0.0
# Calculate DCG@K
dcg = 0.0
for i, doc in enumerate(retrieved_docs[:k]):
if doc.get('source', '') in relevant_doc_ids:
# Relevant document gets score of 1, discounted by position
dcg += 1.0 / np.log2(i + 2) # +2 because log2(1) = 0
# Calculate IDCG@K (ideal ranking - all relevant docs first)
num_relevant = min(len(relevant_doc_ids), k)
idcg = sum(1.0 / np.log2(i + 2) for i in range(num_relevant))
return dcg / idcg if idcg > 0 else 0.0
def evaluate_single_query(self, query_id: str, query: str,
relevant_doc_ids: List[str]) -> QueryResult:
"""
Evaluate retrieval quality for a single query.
Returns comprehensive metrics for this specific query.
"""
logger.info(f"Evaluating query: {query}")
# Measure retrieval performance
start_time = time.time()
# Get retrieval results (without generating answer)
retriever = self.platform_orchestrator._components.get('retriever')
if not retriever:
raise ValueError("No retriever component found in platform orchestrator")
# Perform retrieval
retrieved_results = retriever.retrieve(query, k=10) # Get top 10 for evaluation
response_time = time.time() - start_time
# Convert results to evaluation format
retrieved_docs = []
for result in retrieved_results:
retrieved_docs.append({
'content': result.document.content,
'source': result.document.metadata.get('source', ''),
'score': result.score
})
# Calculate all metrics
context_precision = self.calculate_context_precision(retrieved_docs, relevant_doc_ids)
context_recall = self.calculate_context_recall(retrieved_docs, relevant_doc_ids)
mrr = self.calculate_mrr(retrieved_docs, relevant_doc_ids)
ndcg_at_5 = self.calculate_ndcg_at_k(retrieved_docs, relevant_doc_ids, k=5)
logger.info(f"Query '{query}' results:")
logger.info(f" Context Precision: {context_precision:.3f}")
logger.info(f" Context Recall: {context_recall:.3f}")
logger.info(f" MRR: {mrr:.3f}")
logger.info(f" NDCG@5: {ndcg_at_5:.3f}")
logger.info(f" Response Time: {response_time:.3f}s")
return QueryResult(
query_id=query_id,
query=query,
retrieved_docs=retrieved_docs,
ground_truth_relevant=relevant_doc_ids,
context_precision=context_precision,
context_recall=context_recall,
mrr=mrr,
ndcg_at_5=ndcg_at_5,
response_time=response_time
)
def evaluate_query_set(self, queries: List[Dict[str, Any]],
config_name: str = "unknown") -> RetrievalEvaluationResults:
"""
Evaluate retrieval quality across a set of queries.
Args:
queries: List of dicts with 'id', 'query', 'relevant_docs' keys
config_name: Name of configuration being evaluated
Returns:
Comprehensive evaluation results with averages across all queries
"""
logger.info(f"Starting evaluation of {len(queries)} queries for config: {config_name}")
query_results = []
for query_data in queries:
try:
result = self.evaluate_single_query(
query_id=query_data['id'],
query=query_data['query'],
relevant_doc_ids=query_data['relevant_docs']
)
query_results.append(result)
except Exception as e:
logger.error(f"Failed to evaluate query {query_data['id']}: {e}")
continue
if not query_results:
logger.error("No queries were successfully evaluated")
return RetrievalEvaluationResults(
config_name=config_name,
query_results=[],
avg_context_precision=0.0,
avg_context_recall=0.0,
avg_mrr=0.0,
avg_ndcg_at_5=0.0,
avg_response_time=0.0,
total_queries=0
)
# Calculate averages
avg_context_precision = np.mean([r.context_precision for r in query_results])
avg_context_recall = np.mean([r.context_recall for r in query_results])
avg_mrr = np.mean([r.mrr for r in query_results])
avg_ndcg_at_5 = np.mean([r.ndcg_at_5 for r in query_results])
avg_response_time = np.mean([r.response_time for r in query_results])
results = RetrievalEvaluationResults(
config_name=config_name,
query_results=query_results,
avg_context_precision=avg_context_precision,
avg_context_recall=avg_context_recall,
avg_mrr=avg_mrr,
avg_ndcg_at_5=avg_ndcg_at_5,
avg_response_time=avg_response_time,
total_queries=len(query_results)
)
# Log summary
logger.info(f"Evaluation complete for {config_name}:")
logger.info(f" Average Context Precision: {avg_context_precision:.3f}")
logger.info(f" Average Context Recall: {avg_context_recall:.3f}")
logger.info(f" Average MRR: {avg_mrr:.3f}")
logger.info(f" Average NDCG@5: {avg_ndcg_at_5:.3f}")
logger.info(f" Average Response Time: {avg_response_time:.3f}s")
return results
def compare_configurations(self, baseline_results: RetrievalEvaluationResults,
optimized_results: RetrievalEvaluationResults) -> Dict[str, Any]:
"""
Compare baseline vs optimized configuration results.
Returns statistical comparison with improvement percentages.
"""
comparison = {
'baseline_config': baseline_results.config_name,
'optimized_config': optimized_results.config_name,
'improvements': {}
}
metrics = [
('context_precision', 'Context Precision'),
('context_recall', 'Context Recall'),
('mrr', 'Mean Reciprocal Rank'),
('ndcg_at_5', 'NDCG@5'),
('response_time', 'Response Time (lower is better)')
]
for metric_key, metric_name in metrics:
baseline_val = getattr(baseline_results, f'avg_{metric_key}')
optimized_val = getattr(optimized_results, f'avg_{metric_key}')
if baseline_val > 0:
if metric_key == 'response_time':
# For response time, lower is better
improvement_pct = ((baseline_val - optimized_val) / baseline_val) * 100
else:
# For other metrics, higher is better
improvement_pct = ((optimized_val - baseline_val) / baseline_val) * 100
else:
improvement_pct = 0.0
comparison['improvements'][metric_key] = {
'metric_name': metric_name,
'baseline': baseline_val,
'optimized': optimized_val,
'improvement_pct': improvement_pct,
'significant': abs(improvement_pct) >= 5.0 # 5% threshold
}
return comparison
def print_evaluation_report(self, results: RetrievalEvaluationResults) -> None:
"""Print a comprehensive evaluation report."""
print(f"\n{'='*80}")
print(f"RETRIEVAL QUALITY EVALUATION REPORT")
print(f"Configuration: {results.config_name}")
print(f"{'='*80}")
print(f"\nπŸ“Š OVERALL METRICS (Average across {results.total_queries} queries)")
print("-" * 60)
print(f"Context Precision: {results.avg_context_precision:.3f}")
print(f"Context Recall: {results.avg_context_recall:.3f}")
print(f"Mean Reciprocal Rank: {results.avg_mrr:.3f}")
print(f"NDCG@5: {results.avg_ndcg_at_5:.3f}")
print(f"Avg Response Time: {results.avg_response_time:.3f}s")
# Performance assessment
print(f"\n🎯 PERFORMANCE ASSESSMENT")
print("-" * 60)
# Context Precision assessment
if results.avg_context_precision >= 0.8:
precision_status = "EXCELLENT βœ…"
elif results.avg_context_precision >= 0.6:
precision_status = "GOOD πŸ‘"
elif results.avg_context_precision >= 0.4:
precision_status = "FAIR ⚠️"
else:
precision_status = "POOR ❌"
print(f"Context Precision: {precision_status}")
# Context Recall assessment
if results.avg_context_recall >= 0.8:
recall_status = "EXCELLENT βœ…"
elif results.avg_context_recall >= 0.6:
recall_status = "GOOD πŸ‘"
elif results.avg_context_recall >= 0.4:
recall_status = "FAIR ⚠️"
else:
recall_status = "POOR ❌"
print(f"Context Recall: {recall_status}")
# MRR assessment
if results.avg_mrr >= 0.7:
mrr_status = "EXCELLENT βœ…"
elif results.avg_mrr >= 0.5:
mrr_status = "GOOD πŸ‘"
elif results.avg_mrr >= 0.3:
mrr_status = "FAIR ⚠️"
else:
mrr_status = "POOR ❌"
print(f"Ranking Quality: {mrr_status}")
print(f"\nπŸ“ˆ DETAILED QUERY RESULTS")
print("-" * 60)
for result in results.query_results[:5]: # Show first 5 queries
print(f"Query: {result.query[:50]}...")
print(f" Precision: {result.context_precision:.3f}, Recall: {result.context_recall:.3f}, MRR: {result.mrr:.3f}")
if len(results.query_results) > 5:
print(f"... and {len(results.query_results) - 5} more queries")
if __name__ == "__main__":
# Test the evaluator
logging.basicConfig(level=logging.INFO)
# Initialize platform orchestrator with test config
po = PlatformOrchestrator("config/test_epic2_graph_enabled.yaml")
evaluator = RetrievalQualityEvaluator(po)
# Create test documents
test_docs = [
Document(
content="RISC-V is an open-source instruction set architecture based on RISC principles.",
metadata={"source": "riscv-intro.pdf", "title": "RISC-V Introduction"}
),
Document(
content="The RISC-V vector extension provides SIMD capabilities for parallel computation.",
metadata={"source": "riscv-vector.pdf", "title": "RISC-V Vector Extension"}
)
]
evaluator.index_documents(test_docs)
# Test query
test_queries = [{
'id': 'TEST_001',
'query': 'What is RISC-V?',
'relevant_docs': ['riscv-intro.pdf']
}]
results = evaluator.evaluate_query_set(test_queries, "test_config")
evaluator.print_evaluation_report(results)