technical-rag-assistant / src /confidence_calibration.py
Arthur Passuello
Initial commit
9f5e57c
"""
Confidence calibration framework for RAG systems based on research best practices.
Implements Expected Calibration Error (ECE), Adaptive Calibration Error (ACE),
temperature scaling, and reliability diagrams for proper confidence calibration.
References:
- Guo et al. "On Calibration of Modern Neural Networks" (2017)
- Kumar et al. "Verified Uncertainty Calibration" (2019)
- RAG-specific calibration research (2024)
"""
import numpy as np
import matplotlib.pyplot as plt
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from sklearn.calibration import calibration_curve
from sklearn.metrics import brier_score_loss
import json
from pathlib import Path
@dataclass
class CalibrationMetrics:
"""Container for calibration evaluation metrics."""
ece: float # Expected Calibration Error
ace: float # Adaptive Calibration Error
mce: float # Maximum Calibration Error
brier_score: float # Brier Score
negative_log_likelihood: float # Negative Log Likelihood
reliability_diagram_data: Dict[str, List[float]]
@dataclass
class CalibrationDataPoint:
"""Single data point for calibration evaluation."""
predicted_confidence: float
actual_correctness: float # 0.0 or 1.0
query: str
answer: str
context_relevance: float
metadata: Dict[str, Any]
class ConfidenceCalibrator:
"""
Implements temperature scaling and other calibration methods for RAG systems.
Based on research best practices for confidence calibration in QA systems.
"""
def __init__(self):
self.temperature: Optional[float] = None
self.is_fitted = False
def fit_temperature_scaling(
self,
confidences: List[float],
correctness: List[float]
) -> float:
"""
Fit temperature scaling parameter using validation data.
Args:
confidences: Predicted confidence scores
correctness: Ground truth correctness (0.0 or 1.0)
Returns:
Optimal temperature parameter
"""
from scipy.optimize import minimize_scalar
# Create temporary evaluator for ECE computation
evaluator = CalibrationEvaluator()
def temperature_objective(temp: float) -> float:
"""Objective function for temperature scaling optimization."""
calibrated_confidences = self._apply_temperature_scaling(confidences, temp)
return evaluator._compute_ece(calibrated_confidences, correctness)
# Find optimal temperature
result = minimize_scalar(temperature_objective, bounds=(0.1, 5.0), method='bounded')
self.temperature = result.x
self.is_fitted = True
return self.temperature
def _apply_temperature_scaling(
self,
confidences: List[float],
temperature: float
) -> List[float]:
"""Apply temperature scaling to confidence scores."""
# Convert to logits, apply temperature, convert back to probabilities
confidences = np.array(confidences)
# Avoid log(0) and log(1)
confidences = np.clip(confidences, 1e-8, 1 - 1e-8)
logits = np.log(confidences / (1 - confidences))
scaled_logits = logits / temperature
scaled_confidences = 1 / (1 + np.exp(-scaled_logits))
return scaled_confidences.tolist()
def calibrate_confidence(self, confidence: float) -> float:
"""
Apply fitted temperature scaling to a single confidence score.
Args:
confidence: Raw confidence score
Returns:
Calibrated confidence score
"""
if not self.is_fitted:
raise ValueError("Calibrator must be fitted before use")
return self._apply_temperature_scaling([confidence], self.temperature)[0]
class CalibrationEvaluator:
"""
Evaluates confidence calibration using standard metrics.
Implements ECE, ACE, MCE, Brier Score, and reliability diagrams.
"""
def __init__(self, n_bins: int = 10):
self.n_bins = n_bins
def evaluate_calibration(
self,
data_points: List[CalibrationDataPoint]
) -> CalibrationMetrics:
"""
Compute comprehensive calibration metrics.
Args:
data_points: List of calibration data points
Returns:
CalibrationMetrics with all computed metrics
"""
confidences = [dp.predicted_confidence for dp in data_points]
correctness = [dp.actual_correctness for dp in data_points]
# Compute all metrics
ece = self._compute_ece(confidences, correctness)
ace = self._compute_ace(confidences, correctness)
mce = self._compute_mce(confidences, correctness)
brier = brier_score_loss(correctness, confidences)
nll = self._compute_nll(confidences, correctness)
reliability_data = self._compute_reliability_diagram_data(confidences, correctness)
return CalibrationMetrics(
ece=ece,
ace=ace,
mce=mce,
brier_score=brier,
negative_log_likelihood=nll,
reliability_diagram_data=reliability_data
)
def _compute_ece(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Expected Calibration Error (ECE).
ECE measures the difference between confidence and accuracy across bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_lowers = bin_boundaries[:-1]
bin_uppers = bin_boundaries[1:]
ece = 0.0
for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
# Find samples in this bin
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
prop_in_bin = in_bin.mean()
if prop_in_bin > 0:
accuracy_in_bin = correctness[in_bin].mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += np.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
def _compute_ace(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Adaptive Calibration Error (ACE).
ACE addresses binning bias by using equal-mass bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
# Sort by confidence
indices = np.argsort(confidences)
sorted_confidences = confidences[indices]
sorted_correctness = correctness[indices]
n_samples = len(confidences)
bin_size = n_samples // self.n_bins
ace = 0.0
for i in range(self.n_bins):
start_idx = i * bin_size
end_idx = (i + 1) * bin_size if i < self.n_bins - 1 else n_samples
bin_confidences = sorted_confidences[start_idx:end_idx]
bin_correctness = sorted_correctness[start_idx:end_idx]
if len(bin_confidences) > 0:
avg_confidence = bin_confidences.mean()
accuracy = bin_correctness.mean()
bin_weight = len(bin_confidences) / n_samples
ace += np.abs(avg_confidence - accuracy) * bin_weight
return ace
def _compute_mce(self, confidences: List[float], correctness: List[float]) -> float:
"""
Compute Maximum Calibration Error (MCE).
MCE is the maximum difference between confidence and accuracy across bins.
"""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_lowers = bin_boundaries[:-1]
bin_uppers = bin_boundaries[1:]
max_error = 0.0
for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
if in_bin.sum() > 0:
accuracy_in_bin = correctness[in_bin].mean()
avg_confidence_in_bin = confidences[in_bin].mean()
error = np.abs(avg_confidence_in_bin - accuracy_in_bin)
max_error = max(max_error, error)
return max_error
def _compute_nll(self, confidences: List[float], correctness: List[float]) -> float:
"""Compute Negative Log Likelihood."""
confidences = np.array(confidences)
correctness = np.array(correctness)
# Avoid log(0)
confidences = np.clip(confidences, 1e-8, 1 - 1e-8)
# For binary classification: NLL = -Σ[y*log(p) + (1-y)*log(1-p)]
nll = -(correctness * np.log(confidences) +
(1 - correctness) * np.log(1 - confidences)).mean()
return nll
def _compute_reliability_diagram_data(
self,
confidences: List[float],
correctness: List[float]
) -> Dict[str, List[float]]:
"""Compute data for reliability diagram visualization."""
confidences = np.array(confidences)
correctness = np.array(correctness)
bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
bin_centers = (bin_boundaries[:-1] + bin_boundaries[1:]) / 2
bin_confidences = []
bin_accuracies = []
bin_counts = []
for i in range(self.n_bins):
bin_lower = bin_boundaries[i]
bin_upper = bin_boundaries[i + 1]
in_bin = (confidences > bin_lower) & (confidences <= bin_upper)
count = in_bin.sum()
if count > 0:
avg_confidence = confidences[in_bin].mean()
accuracy = correctness[in_bin].mean()
else:
avg_confidence = bin_centers[i]
accuracy = 0.0
bin_confidences.append(avg_confidence)
bin_accuracies.append(accuracy)
bin_counts.append(count)
return {
"bin_centers": bin_centers.tolist(),
"bin_confidences": bin_confidences,
"bin_accuracies": bin_accuracies,
"bin_counts": bin_counts
}
def plot_reliability_diagram(
self,
metrics: CalibrationMetrics,
save_path: Optional[Path] = None
) -> None:
"""
Create and optionally save a reliability diagram.
Args:
metrics: CalibrationMetrics containing reliability data
save_path: Optional path to save the plot
"""
data = metrics.reliability_diagram_data
fig, ax = plt.subplots(figsize=(8, 6))
# Plot reliability line (perfect calibration)
ax.plot([0, 1], [0, 1], 'k--', alpha=0.7, label='Perfect calibration')
# Plot actual calibration
ax.bar(
data["bin_centers"],
data["bin_accuracies"],
width=0.08,
alpha=0.7,
edgecolor='black',
label='Model calibration'
)
# Plot gap between confidence and accuracy
for center, conf, acc in zip(
data["bin_centers"],
data["bin_confidences"],
data["bin_accuracies"]
):
if conf != acc:
ax.plot([center, center], [acc, conf], 'r-', alpha=0.8, linewidth=2)
ax.set_xlabel('Confidence')
ax.set_ylabel('Accuracy')
ax.set_title(f'Reliability Diagram (ECE: {metrics.ece:.3f})')
ax.legend()
ax.grid(True, alpha=0.3)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
else:
plt.show()
def create_evaluation_dataset_from_test_results(
test_results: List[Dict[str, Any]]
) -> List[CalibrationDataPoint]:
"""
Convert test results into calibration evaluation dataset.
Args:
test_results: List of test result dictionaries
Returns:
List of CalibrationDataPoint objects
"""
data_points = []
for result in test_results:
# Extract correctness (this would need domain-specific logic)
# For now, use a simple heuristic based on answer quality
correctness = _assess_answer_correctness(result)
data_point = CalibrationDataPoint(
predicted_confidence=result.get('confidence', 0.0),
actual_correctness=correctness,
query=result.get('query', ''),
answer=result.get('answer', ''),
context_relevance=_compute_context_relevance(result),
metadata={
'model_used': result.get('model_used', ''),
'retrieval_method': result.get('retrieval_method', ''),
'num_citations': len(result.get('citations', []))
}
)
data_points.append(data_point)
return data_points
def _assess_answer_correctness(result: Dict[str, Any]) -> float:
"""
Assess answer correctness for calibration evaluation.
This is a simplified heuristic - in practice, this should be:
1. Human evaluation
2. Automated fact-checking against ground truth
3. Domain-specific quality metrics
"""
answer = result.get('answer', '').lower()
citations = result.get('citations', [])
# Simple heuristic: consider correct if has citations and no uncertainty
uncertainty_phrases = [
'cannot answer', 'not contained', 'no relevant',
'insufficient information', 'unclear', 'not specified'
]
has_uncertainty = any(phrase in answer for phrase in uncertainty_phrases)
has_citations = len(citations) > 0
if has_uncertainty:
return 0.0 # Explicit uncertainty = incorrect/no answer
elif has_citations and len(answer.split()) > 10:
return 1.0 # Has citations and substantial answer = likely correct
else:
return 0.5 # Partial credit for borderline cases
def _compute_context_relevance(result: Dict[str, Any]) -> float:
"""Compute average relevance of retrieved context."""
citations = result.get('citations', [])
if not citations:
return 0.0
relevances = [citation.get('relevance', 0.0) for citation in citations]
return sum(relevances) / len(relevances)
if __name__ == "__main__":
# Example usage and testing
print("Testing confidence calibration framework...")
# Create mock data for testing
np.random.seed(42)
n_samples = 100
# Simulate miscalibrated confidence scores (too high)
true_correctness = np.random.binomial(1, 0.6, n_samples)
predicted_confidence = np.random.beta(8, 3, n_samples) # Overconfident
# Test calibration evaluation
evaluator = CalibrationEvaluator()
data_points = [
CalibrationDataPoint(
predicted_confidence=conf,
actual_correctness=float(correct),
query=f"query_{i}",
answer=f"answer_{i}",
context_relevance=0.7,
metadata={}
)
for i, (conf, correct) in enumerate(zip(predicted_confidence, true_correctness))
]
metrics = evaluator.evaluate_calibration(data_points)
print(f"Before calibration:")
print(f" ECE: {metrics.ece:.3f}")
print(f" ACE: {metrics.ace:.3f}")
print(f" MCE: {metrics.mce:.3f}")
print(f" Brier Score: {metrics.brier_score:.3f}")
# Test temperature scaling
calibrator = ConfidenceCalibrator()
optimal_temp = calibrator.fit_temperature_scaling(
predicted_confidence.tolist(),
true_correctness.tolist()
)
print(f" Optimal temperature: {optimal_temp:.3f}")
# Apply calibration
calibrated_confidences = [
calibrator.calibrate_confidence(conf) for conf in predicted_confidence
]
# Re-evaluate
calibrated_data_points = [
CalibrationDataPoint(
predicted_confidence=conf,
actual_correctness=float(correct),
query=f"query_{i}",
answer=f"answer_{i}",
context_relevance=0.7,
metadata={}
)
for i, (conf, correct) in enumerate(zip(calibrated_confidences, true_correctness))
]
calibrated_metrics = evaluator.evaluate_calibration(calibrated_data_points)
print(f"\nAfter temperature scaling:")
print(f" ECE: {calibrated_metrics.ece:.3f}")
print(f" ACE: {calibrated_metrics.ace:.3f}")
print(f" MCE: {calibrated_metrics.mce:.3f}")
print(f" Brier Score: {calibrated_metrics.brier_score:.3f}")
print("\n✅ Calibration framework working correctly!")