masx-openchat-llm / README.md
ateetvatan
updated readme
4ede07c
metadata
title: MASX OpenChat
emoji: πŸ€–
colorFrom: indigo
colorTo: blue
sdk: docker
pinned: false
app_file: app.py

MASX OpenChat LLM

A FastAPI service that brings the OpenChat-3.5 language model to life through a clean, scalable REST API.

What is this?

MASX LLM OpenChat-3.5 model.

πŸ”‘ Key Features

  • Powered by OpenChat-3.5: Latest conversational AI model with 7B parameters
  • FastAPI + Docker: Clean, modular, and containerized
  • Easy integration: REST API ready for real-world apps

πŸš€ Quick Start

Requirements

  • 8GB+ RAM (16GB+ recommended)
  • GPU with 8GB+ VRAM (optional but faster)

Install dependencies

pip install -r requirements.txt

Config

cp env.example .env
# Edit .env with your preferred settings

Start the server

python app.py

That's it! Your AI service is now running at http://localhost:8080

Use

Basic Chat Request

curl -X POST "http://localhost:8080/chat" \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "Hello! Can you help me write a Python function?",
    "max_tokens": 256,
    "temperature": 0.7
  }'

Response Format

{
  "response": "Of course! I'd be happy to help you write a Python function. What kind of function would you like to create? Please let me know what it should do, and I'll help you implement it with proper syntax and best practices."
}

API Endpoints

Endpoint Method Description
/status GET Check service health and get model info
/chat POST Generate AI responses
/docs GET Interactive API documentation (Swagger UI)
/redoc GET Alternative API documentation

Request Parameters

Parameter Type Default Description
prompt string required Your input text/question
max_tokens integer 256 Maximum tokens to generate
temperature float 0.0 Creativity level (0.0 = deterministic, 2.0 = very creative)

πŸ”§ Configuration

The service is highly configurable through environment variables. Copy env.example to .env and customize:

Essential Settings

# Server Configuration
HOST=0.0.0.0
PORT=8080
LOG_LEVEL=info

Advanced S

🐳 Docker Deployment

πŸ“Š Monitoring & Health

Health Check

curl http://localhost:8080/status

Response:

{
  "status": "ok",
  "max_tokens": 4096
}

Logs

The service provides comprehensive logging:

  • Application logs: ./logs/app.log
  • Console output: Real-time server logs
  • Error tracking: Detailed error information with stack traces

πŸ› οΈ Development

Project Structure

masx-openchat-llm/
β”œβ”€β”€ app.py              # FastAPI application
β”œβ”€β”€ model_loader.py     # Model loading and configuration
β”œβ”€β”€ requirements.txt    # Python dependencies
β”œβ”€β”€ .env.example        # Environment variables template
β”œβ”€β”€ .gitignore          # Git ignore rules
└── README.md          # This file

Adding Features

  1. New Endpoints: Add routes in app.py
  2. Model Configuration: Modify model_loader.py
  3. Dependencies: Update requirements.txt
  4. Environment Variables: Add to env.example

**Made by the MASX AI **

Ready to build the future of AI-powered applications? Start with MASX OpenChat LLM!