Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import threading | |
import time | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download, login, list_repo_files | |
# Try to import llama-cpp-python, fallback to instructions if not available | |
try: | |
from llama_cpp import Llama | |
LLAMA_CPP_AVAILABLE = True | |
except ImportError: | |
LLAMA_CPP_AVAILABLE = False | |
print("llama-cpp-python not installed. Please install it with: pip install llama-cpp-python") | |
# Global variables for model | |
model = None | |
model_loaded = False | |
# Default system prompt | |
DEFAULT_SYSTEM_PROMPT = """You are MMed-Llama-Alpaca, a helpful AI assistant specialized in medical and healthcare topics. You provide accurate, evidence-based information while being empathetic and understanding. | |
Important guidelines: | |
- Always remind users that your responses are for educational purposes only | |
- Encourage users to consult healthcare professionals for medical advice | |
- Be thorough but clear in your explanations | |
- If unsure about medical information, acknowledge limitations | |
- Maintain a professional yet caring tone""" | |
# HuggingFace repository information | |
HF_REPO_ID = "Axcel1/MMed-llama-alpaca-Q4_K_M-GGUF" | |
HF_FILENAME = "mmed-llama-alpaca-q4_k_m.gguf" | |
hf_token = os.environ.get("HF_TOKEN") | |
if hf_token: | |
login(token=hf_token) | |
def find_gguf_file(directory="."): | |
"""Find GGUF files in the specified directory""" | |
gguf_files = [] | |
for root, dirs, files in os.walk(directory): | |
for file in files: | |
if file.endswith('.gguf'): | |
gguf_files.append(os.path.join(root, file)) | |
return gguf_files | |
def get_repo_gguf_files(repo_id=HF_REPO_ID): | |
"""Get all GGUF files from the HuggingFace repository""" | |
try: | |
print(f"Fetching file list from {repo_id}...") | |
files = list_repo_files(repo_id=repo_id, token=hf_token) | |
gguf_files = [f for f in files if f.endswith('.gguf')] | |
print(f"Found {len(gguf_files)} GGUF files in repository") | |
return gguf_files, None | |
except Exception as e: | |
error_msg = f"Error fetching repository files: {str(e)}" | |
print(error_msg) | |
return [], error_msg | |
def download_model_from_hf(repo_id=HF_REPO_ID, filename=HF_FILENAME): | |
"""Download GGUF model from HuggingFace Hub""" | |
try: | |
print(f"Downloading model from {repo_id}/{filename}...") | |
gguf_path = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
cache_dir="./models", | |
resume_download=True # Resume partial downloads | |
) | |
print(f"Model downloaded to: {gguf_path}") | |
return gguf_path, None | |
except Exception as e: | |
error_msg = f"Error downloading model: {str(e)}" | |
print(error_msg) | |
return None, error_msg | |
def get_optimal_settings(): | |
"""Get optimal CPU threads and GPU layers automatically""" | |
# Auto-detect CPU threads (use all available cores) | |
n_threads = os.cpu_count() | |
# For Hugging Face Spaces, limit threads to avoid resource issues | |
if n_threads and n_threads > 4: | |
n_threads = 4 | |
# Auto-detect GPU layers (try to use GPU if available) | |
n_gpu_layers = 0 | |
try: | |
# Try to detect if CUDA is available | |
import subprocess | |
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True) | |
if result.returncode == 0: | |
# NVIDIA GPU detected, use more layers | |
n_gpu_layers = 35 # Good default for Llama-3-8B | |
except: | |
# No GPU or CUDA not available | |
n_gpu_layers = 0 | |
return n_threads, n_gpu_layers | |
def load_model_from_gguf(gguf_path=None, filename=None, n_ctx=2048, use_hf_download=True): | |
"""Load the model from a GGUF file with automatic optimization""" | |
global model, model_loaded | |
if not LLAMA_CPP_AVAILABLE: | |
return False, "llama-cpp-python not installed. Please install it with: pip install llama-cpp-python" | |
try: | |
# If no path provided, try different approaches | |
if gguf_path is None: | |
if use_hf_download: | |
# Use the specified filename or default | |
selected_filename = filename if filename else HF_FILENAME | |
# Try to download from HuggingFace first | |
gguf_path, error = download_model_from_hf(filename=selected_filename) | |
if error: | |
return False, f"❌ Failed to download from HuggingFace: {error}" | |
else: | |
# Try to find local GGUF files | |
gguf_files = find_gguf_file() | |
if not gguf_files: | |
return False, "No GGUF files found in the repository" | |
gguf_path = gguf_files[0] # Use the first one found | |
print(f"Found local GGUF file: {gguf_path}") | |
# Check if file exists | |
if not os.path.exists(gguf_path): | |
return False, f"GGUF file not found: {gguf_path}" | |
print(f"Loading model from: {gguf_path}") | |
# Get optimal settings automatically | |
n_threads, n_gpu_layers = get_optimal_settings() | |
print(f"Auto-detected settings: {n_threads} CPU threads, {n_gpu_layers} GPU layers") | |
# Load model with optimized settings for Hugging Face Spaces | |
model = Llama( | |
model_path=gguf_path, | |
n_ctx=n_ctx, # Context window (configurable) | |
n_threads=n_threads, # CPU threads (limited for Spaces) | |
n_gpu_layers=n_gpu_layers, # Number of layers to offload to GPU | |
verbose=False, | |
chat_format="llama-3", # Use Llama-3 chat format | |
n_batch=256, # Smaller batch size for Spaces | |
use_mlock=False, # Disabled for Spaces compatibility | |
use_mmap=True, # Use memory mapping | |
) | |
model_loaded = True | |
selected_filename = filename if filename else os.path.basename(gguf_path) | |
print("Model loaded successfully!") | |
return True, f"✅ Model loaded successfully: {selected_filename}\n📊 Context: {n_ctx} tokens\n🖥️ CPU Threads: {n_threads}\n🎮 GPU Layers: {n_gpu_layers}\n📦 Source: {HF_REPO_ID}" | |
except Exception as e: | |
model_loaded = False | |
error_msg = f"Error loading model: {str(e)}" | |
print(error_msg) | |
return False, f"❌ {error_msg}" | |
def generate_response_stream(message, history, system_prompt, max_tokens=512, temperature=0.7, top_p=0.9, repeat_penalty=1.1): | |
"""Generate response from the model with streaming""" | |
global model, model_loaded | |
if not model_loaded or model is None: | |
yield "Error: Model not loaded. Please load the model first." | |
return | |
try: | |
# Format the conversation history for Llama-3 | |
conversation = [] | |
# Add system prompt if provided | |
if system_prompt and system_prompt.strip(): | |
conversation.append({"role": "system", "content": system_prompt.strip()}) | |
# Add conversation history | |
for human, assistant in history: | |
conversation.append({"role": "user", "content": human}) | |
if assistant: # Only add if assistant response exists | |
conversation.append({"role": "assistant", "content": assistant}) | |
# Add current message | |
conversation.append({"role": "user", "content": message}) | |
# Generate response with streaming | |
response = "" | |
stream = model.create_chat_completion( | |
messages=conversation, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
repeat_penalty=repeat_penalty, | |
stream=True, | |
stop=["<|eot_id|>", "<|end_of_text|>"] | |
) | |
for chunk in stream: | |
if chunk['choices'][0]['delta'].get('content'): | |
new_text = chunk['choices'][0]['delta']['content'] | |
response += new_text | |
yield response | |
except Exception as e: | |
yield f"Error generating response: {str(e)}" | |
def chat_interface(message, history, system_prompt, max_tokens, temperature, top_p, repeat_penalty): | |
"""Main chat interface function""" | |
if not message.strip(): | |
return history, "" | |
if not model_loaded: | |
history.append((message, "Please load the model first using the 'Load Model' button.")) | |
return history, "" | |
# Add user message to history | |
history = history + [(message, "")] | |
# Generate response | |
for response in generate_response_stream(message, history[:-1], system_prompt, max_tokens, temperature, top_p, repeat_penalty): | |
history[-1] = (message, response) | |
yield history, "" | |
def clear_chat(): | |
"""Clear the chat history""" | |
return [], "" | |
def reset_system_prompt(): | |
"""Reset system prompt to default""" | |
return DEFAULT_SYSTEM_PROMPT | |
def load_model_interface(context_size, selected_model): | |
"""Interface function to load model with configurable context size""" | |
success, message = load_model_from_gguf(gguf_path=None, filename=selected_model, n_ctx=int(context_size), use_hf_download=True) | |
return message | |
def refresh_model_list(): | |
"""Refresh the list of available GGUF models from the repository""" | |
gguf_files, error = get_repo_gguf_files() | |
if error: | |
return gr.Dropdown(choices=["Error loading models"], value="Error loading models") | |
if not gguf_files: | |
return gr.Dropdown(choices=["No GGUF files found"], value="No GGUF files found") | |
# Set default value to the original default file if it exists | |
default_value = HF_FILENAME if HF_FILENAME in gguf_files else gguf_files[0] | |
return gr.Dropdown(choices=gguf_files, value=default_value) | |
def get_available_gguf_files(): | |
"""Get list of available GGUF files""" | |
gguf_files = find_gguf_file() | |
if not gguf_files: | |
return ["No local GGUF files found"] | |
return [os.path.basename(f) for f in gguf_files] | |
def check_model_availability(): | |
"""Check if model is available locally or needs to be downloaded""" | |
local_files = find_gguf_file() | |
if local_files: | |
return f"Local GGUF files found: {len(local_files)}" | |
else: | |
return "No local GGUF files found. Will download from HuggingFace." | |
# Create the Gradio interface | |
def create_interface(): | |
# Check for available models | |
availability_status = check_model_availability() | |
# Get initial list of GGUF files from repository | |
gguf_files, error = get_repo_gguf_files() | |
if error or not gguf_files: | |
initial_choices = ["Error loading models" if error else "No GGUF files found"] | |
initial_value = initial_choices[0] | |
else: | |
initial_choices = gguf_files | |
initial_value = HF_FILENAME if HF_FILENAME in gguf_files else gguf_files[0] | |
with gr.Blocks(title="MMed-Llama-Alpaca GGUF Chatbot", theme=gr.themes.Soft()) as demo: | |
gr.HTML(""" | |
<h1 style="text-align: center; color: #2E86AB; margin-bottom: 30px;"> | |
🦙 MMed-Llama-Alpaca Chatbot | |
</h1> | |
<p style="text-align: center; color: #666; margin-bottom: 30px;"> | |
Chat with the MMed-Llama-Alpaca model (Q4_K_M quantized) for medical assistance!<br> | |
<strong>⚠️ This is for educational purposes only. Always consult healthcare professionals for medical advice.</strong> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
# System prompt configuration | |
gr.HTML("<h3>🎯 System Prompt Configuration</h3>") | |
with gr.Row(): | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
value=DEFAULT_SYSTEM_PROMPT, | |
placeholder="Enter system prompt to define the AI's behavior and role...", | |
lines=4, | |
max_lines=15, | |
scale=4, | |
autoscroll=True, | |
) | |
# with gr.Column(scale=1): | |
# reset_prompt_btn = gr.Button("Reset to Default", variant="secondary", size="sm") | |
# gr.HTML("<p style='font-size: 0.8em; color: #666; margin-top: 10px;'>The system prompt defines how the AI should behave and respond. Changes apply to new conversations.</p>") | |
# Chat interface | |
chatbot = gr.Chatbot( | |
height=400, | |
show_copy_button=True, | |
bubble_full_width=False, | |
show_label=False, | |
placeholder="Ask anything" | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
placeholder="Type your medical question here...", | |
container=False, | |
scale=7, | |
show_label=False | |
) | |
submit_btn = gr.Button("Send", variant="primary", scale=1) | |
clear_btn = gr.Button("Clear", variant="secondary", scale=1) | |
with gr.Column(scale=1): | |
# Model loading section | |
gr.HTML("<h3>🔧 Model Control</h3>") | |
# Model selection dropdown | |
model_dropdown = gr.Dropdown( | |
choices=initial_choices, | |
value=initial_value, | |
label="Select GGUF Model", | |
info="Choose from available models in the repository", | |
interactive=True | |
) | |
# Context size (limited for Spaces) | |
context_size = gr.Slider( | |
minimum=512, | |
maximum=8192, | |
value=2048, | |
step=256, | |
label="Context Size", | |
info="Token context window (requires model reload)" | |
) | |
load_btn = gr.Button("Load Model", variant="primary", size="lg") | |
model_status = gr.Textbox( | |
label="Status", | |
value=f"Model not loaded.\n{availability_status}\n⚙️ Auto-optimized: CPU threads & GPU layers auto-detected\n📝 Context size can be configured below", | |
interactive=False, | |
max_lines=10 | |
) | |
# Generation parameters | |
gr.HTML("<h3>⚙️ Generation Settings</h3>") | |
max_tokens = gr.Slider( | |
minimum=50, | |
maximum=1024, | |
value=512, | |
step=50, | |
label="Max Tokens", | |
info="Maximum response length" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Creativity (higher = more creative)" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.1, | |
label="Top-p", | |
info="Nucleus sampling" | |
) | |
repeat_penalty = gr.Slider( | |
minimum=1.0, | |
maximum=1.5, | |
value=1.1, | |
step=0.1, | |
label="Repeat Penalty", | |
info="Penalize repetition" | |
) | |
# Information section | |
gr.HTML(""" | |
<h3>ℹ️ About</h3> | |
<p><strong>Model:</strong> MMed-Llama-Alpaca</p> | |
<p><strong>Quantization:</strong> Q4_K_M</p> | |
<p><strong>Format:</strong> GGUF (optimized)</p> | |
<p><strong>Backend:</strong> llama-cpp-python</p> | |
<p><strong>Features:</strong> CPU/GPU support, streaming, system prompts</p> | |
<p><strong>Specialty:</strong> Medical assistance</p> | |
<p><strong>Auto-Optimization:</strong> CPU threads & GPU layers detected automatically</p> | |
""") | |
if not LLAMA_CPP_AVAILABLE: | |
gr.HTML(""" | |
<div style="background-color: #ffebee; padding: 10px; border-radius: 5px; margin-top: 10px;"> | |
<p style="color: #c62828; margin: 0;"><strong>⚠️ Missing Dependency</strong></p> | |
<p style="color: #c62828; margin: 0; font-size: 0.9em;"> | |
Install llama-cpp-python:<br> | |
<code>pip install llama-cpp-python</code> | |
</p> | |
</div> | |
""") | |
# Event handlers | |
load_btn.click( | |
load_model_interface, | |
inputs=[context_size, model_dropdown], | |
outputs=model_status | |
) | |
submit_btn.click( | |
chat_interface, | |
inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p, repeat_penalty], | |
outputs=[chatbot, msg] | |
) | |
msg.submit( | |
chat_interface, | |
inputs=[msg, chatbot, system_prompt, max_tokens, temperature, top_p, repeat_penalty], | |
outputs=[chatbot, msg] | |
) | |
clear_btn.click( | |
clear_chat, | |
outputs=[chatbot, msg] | |
) | |
# reset_prompt_btn.click( | |
# reset_system_prompt, | |
# outputs=system_prompt | |
# ) | |
return demo | |
if __name__ == "__main__": | |
# Create and launch the interface | |
demo = create_interface() | |
# Launch with settings optimized for Hugging Face Spaces | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
debug=False, | |
show_error=True, | |
quiet=False | |
) |