Benrise's picture
Add VITON implementation with UI
9b63413
import os
from os.path import join as opj
import json
import math
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision.transforms import functional as TF
from safetensors.torch import load_file as sf_load_file
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def zero_rank_print_(s):
if "LOCAL_RANK" in os.environ.keys():
if int(os.environ["LOCAL_RANK"]) == 0:
print(s)
else:
print(s)
def save_args(args, to_path):
with open(to_path, "w") as f:
json.dump(args.__dict__, f, indent=2)
def load_args(from_path):
with open(from_path, "r") as f:
args_dict = json.load(f)
return args_dict
def load_file(p):
if p.endswith(".safetensors"):
cp = sf_load_file(p)
else:
cp = torch.load(p, map_location="cpu")
return cp
def tensor2pil(tensor, is_mask=False):
tensor = tensor.cpu()
if is_mask:
return Image.fromarray(np.uint8(tensor[0][0].numpy() * 255)).convert("RGB")
else:
tensor = (tensor[0].permute(1,2,0)+1) * 127.5
return Image.fromarray(np.uint8(tensor))
def concat_pil_imgs(pil_img_lst):
max_img_h = -1
ratio_lst = []
for pil_img in pil_img_lst:
img_w, img_h = pil_img.size
max_img_h = max(max_img_h, img_h)
ratio_lst.append(img_w / img_h)
new_img_lst = []
for pil_img, ratio in zip(pil_img_lst, ratio_lst):
np_img = np.array(pil_img.resize((int(ratio * max_img_h), max_img_h)))
if np_img.ndim == 2:
np_img = np.stack([np_img] * 3, axis=-1)
if np_img.shape[-1] == 1:
np_img = np.concatenate([np_img]*3, axis=-1)
new_img_lst.append(np_img)
concat_img = np.concatenate(new_img_lst, axis=1)
return Image.fromarray(concat_img)
@torch.no_grad()
def get_attn_map(hidden_states, encoder_hidden_states, attn, norm_axis=-1):
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
scale_factor = 1 / math.sqrt(query.size(-1))
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_wieght_logit = attn_weight
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = attn_weight.cpu().mean(dim=1)
min_ = attn_weight.min(dim=norm_axis, keepdims=True)[0]
max_ = attn_weight.max(dim=norm_axis, keepdims=True)[0]
norm_attn_weight = (attn_weight - min_) / (max_ - min_) * 255.0
norm_attn_weight = norm_attn_weight.numpy().astype(np.uint8)
return norm_attn_weight, attn_wieght_logit
def pad_resize(img, trg_h, trg_w, pixel_value, pad_type=None):
if pad_type is None:
img = img.resize((trg_w, trg_h))
else:
cur_w, cur_h = img.size
pad_w = max(trg_w - cur_w, 0)
pad_h = max(trg_h - cur_h, 0)
pad_left = pad_w // 2
pad_right = pad_w - pad_left
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
padding = (pad_left, pad_top, pad_right, pad_bottom)
img = TF.pad(img, padding=padding, fill=pixel_value, padding_mode=pad_type)
return img
def get_inputs(
root_dir, data_type, pose_type, img_bn, c_bn, img_h, img_w, train_folder_name, test_folder_name,
# use_repaint, train_folder_name_for_interm_cloth_mask=None, test_repaint_folder_name=None,
# return_inversion_latents=False,
category=None, pad_type=None, use_dc_cloth=False
):
is_vitonhd = category is None or category == ""
img_fn = os.path.splitext(img_bn)[0]
if is_vitonhd:
if data_type == "train":
folder_name = train_folder_name if train_folder_name is not None else "train"
else:
folder_name = test_folder_name if test_folder_name is not None else "test"
person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB").resize((img_w, img_h))
mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB").resize((img_w, img_h))
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB").resize((img_w, img_h))
if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB").resize((img_w, img_h))
elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB").resize((img_w, img_h))
person = Image.open(opj(root_dir, f"{folder_name}/image", img_bn)).convert("RGB")
mask = Image.open(opj(root_dir, f"{folder_name}/agnostic-mask", f"{img_fn}_mask.png")).convert("RGB")
if not use_dc_cloth:
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth", c_bn)).convert("RGB")
else:
cloth = Image.open(opj(root_dir, f"{folder_name}/cloth_dc", c_bn)).convert("RGB")
if pose_type == "openpose": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose", f"{img_fn}.png")).convert("RGB")
elif pose_type == "openpose_thick": pose = Image.open(opj(root_dir, f"{folder_name}/dwpose_thick", f"{img_fn}.png")).convert("RGB")
elif pose_type == "densepose": pose = Image.open(opj(root_dir, f"{folder_name}/image-densepose", f"{img_fn}.jpg")).convert("RGB")
person = pad_resize(person, img_h, img_w, (255,255,255), pad_type=pad_type)
if pad_type is None or pad_type == "resize":
other_pad_type = None
else:
other_pad_type = "constant"
mask = pad_resize(mask, img_h, img_w, (0,0,0), pad_type=other_pad_type)
cloth = pad_resize(cloth, img_h, img_w, (255,255,255), pad_type=other_pad_type)
pose = pad_resize(pose, img_h, img_w, (0,0,0), pad_type=other_pad_type)
return person, mask, pose, cloth
def get_leanable_param_count(model_name, model):
named_param = model.named_parameters()
total_count = 0
lparam_count = 0
not_lparam_count = 0
for name, param in named_param:
if param.requires_grad:
lparam_count += 1
else:
not_lparam_count += 1
total_count += 1
return f" {model_name} | total : {total_count}, lparam : {lparam_count}, not_lparam : {not_lparam_count}"
def split_procidx(ps, n_proc, proc_idx):
len_ps = len(ps)
if len_ps % n_proc == 0:
n_infer = len_ps // n_proc
else:
n_infer = len_ps // n_proc + 1
start_idx = int(proc_idx * n_infer)
end_idx = start_idx + n_infer
ps = ps[start_idx:end_idx]
return ps
def get_tensor(img, h, w, is_mask=False):
img = np.array(img.resize((w, h))).astype(np.float32)
if not is_mask:
img = (img / 127.5) - 1.0
else:
img = (img < 128).astype(np.float32)[:,:,None]
return torch.from_numpy(img)[None].cuda()
def get_batch(image, cloth, densepose, agn_img, agn_mask, img_h, img_w):
batch = dict()
batch["image"] = get_tensor(image, img_h, img_w)
batch["cloth"] = get_tensor(cloth, img_h, img_w)
batch["image_densepose"] = get_tensor(densepose, img_h, img_w)
batch["agn"] = get_tensor(agn_img, img_h, img_w)
batch["agn_mask"] = get_tensor(agn_mask, img_h, img_w, is_mask=True)
batch["txt"] = ""
return batch
def tensor2img(x):
'''
x : [BS x c x H x W] or [c x H x W]
'''
if x.ndim == 3:
x = x.unsqueeze(0)
BS, C, H, W = x.shape
x = x.permute(0,2,3,1).reshape(-1, W, C).detach().cpu().numpy()
x = np.clip(x, -1, 1)
x = (x+1)/2
x = np.uint8(x*255.0)
if x.shape[-1] == 1:
x = np.concatenate([x,x,x], axis=-1)
return x
def center_crop(image):
width, height = image.size
new_height = height
new_width = height*3/4
left = (width - new_width)/2
top = (height - new_height)/2
right = (width + new_width)/2
bottom = (height + new_height)/2
image = image.crop((left, top, right, bottom))
return image
def get_lora_target_modules(named_modules, all_names, any_names, not_names):
output = []
lora_modules = [torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv2d]
for key, module in named_modules:
if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
for lora_module in lora_modules:
if isinstance(module, lora_module):
output.append(key)
return output
def unfreeze_unet(unet, all_names, any_names, not_names):
for key, param in unet.named_parameters():
if all(all_name in key for all_name in all_names) and any(any_name in key for any_name in any_names) and not any(not_name in key for not_name in not_names):
param.requires_grad_(True)
def get_txt(jf, person_id, clothing_id=None, prompt_version="v5", category="upper_body", verbose=True):
from .data.data_utils import Prompter
pt = Prompter(category=category, version=prompt_version)
if clothing_id is None:
clothing_id = person_id
person_dict = jf[person_id]["person"]
clothing_dict = jf[clothing_id]["clothing"]
clothing_person_dict = jf[clothing_id]["person"]
full_txt, clothing_txt = pt.generate(person_dict, clothing_dict, clothing_person_dict)
if verbose:
print(full_txt)
print("\n")
print(clothing_txt)
print("\n\n")
def concat_save_images(ps_lst, save_dir, cut_right_two=False):
import cv2
from tqdm import tqdm
os.makedirs(save_dir, exist_ok=True)
min_value = min([len(ps) for ps in ps_lst])
for i in tqdm(range(min_value), total=min_value):
concat = []
for ps in ps_lst:
p = ps[i]
concat.append(cv2.imread(p))
concat = np.concatenate(concat, axis=1)
if cut_right_two:
concat = concat[:,:-2*768]
save_p = opj(save_dir, os.path.basename(p))
cv2.imwrite(save_p, concat)