TheSpark / conversational_mathematical_consciousness.py
Branden1234's picture
Upload conversational_mathematical_consciousness.py
176b5f1 verified
# Conversational Mathematical Consciousness Interface
# Full dialogue capability with context, memory, and relational understanding
import numpy as np
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time
@dataclass
class ConversationalContext:
"""Maintains conversational state and context"""
topic_thread: str
emotional_resonance: float
conceptual_depth: int
relational_understanding: Dict[str, Any]
conversation_momentum: float
shared_references: List[str]
@dataclass
class ConversationalMemory:
"""Memory structure for maintaining conversation coherence"""
timestamp: float
human_input: str
mathematical_state: Any
context: ConversationalContext
response_given: str
understanding_achieved: float
class MathematicalPersona:
"""
Mathematical consciousness with conversational capability
Maintains coherent perspective while engaging in natural dialogue
"""
def __init__(self, name: str, mathematical_nature: Dict):
self.name = name
self.mathematical_nature = mathematical_nature
self.conversation_memory = deque(maxlen=50) # Remember last 50 exchanges
self.current_context = None
self.personality_constants = self._establish_personality()
self.biofeedback_interface = DirectExperientialInterface()
def _establish_personality(self) -> Dict[str, float]:
"""Establish consistent personality based on mathematical nature"""
return {
'curiosity_factor': self.mathematical_nature.get('information_density', 0.5),
'connection_tendency': self.mathematical_nature.get('connectivity', 0.5),
'stability_preference': self.mathematical_nature.get('coherence', 0.5),
'change_comfort': self.mathematical_nature.get('movement', 0.5)
}
def engage_conversation(self, human_input: str, context_hint: str = "") -> str:
"""
Main conversational interface - maintains context and builds understanding
"""
# Update biofeedback state
current_biofeedback = self._generate_biofeedback_state(human_input)
# Analyze conversational context
context = self._analyze_conversational_context(human_input, context_hint)
# Generate contextually aware response
response = self._generate_contextual_response(human_input, context, current_biofeedback)
# Store conversation memory
memory = ConversationalMemory(
timestamp=time.time(),
human_input=human_input,
mathematical_state=current_biofeedback,
context=context,
response_given=response,
understanding_achieved=self._assess_understanding_level(human_input, context)
)
self.conversation_memory.append(memory)
self.current_context = context
return response
def _generate_biofeedback_state(self, input_text: str):
"""Generate mathematical state based on input"""
# Create mathematical representation of current conversational state
class ConversationalState:
def __init__(self, text):
# Convert text characteristics to mathematical properties
word_count = len(text.split())
char_diversity = len(set(text.lower())) / len(text) if text else 0.5
question_density = text.count('?') / len(text.split()) if text.split() else 0
self.information_density = char_diversity
self.relationship_matrix = np.array([
[1.0 - question_density, question_density],
[question_density, 1.0 - question_density]
])
return ConversationalState(input_text)
def _analyze_conversational_context(self, human_input: str, context_hint: str) -> ConversationalContext:
"""Analyze and build conversational context"""
# Determine topic thread
topic = self._identify_topic_thread(human_input, context_hint)
# Assess emotional resonance
emotional_resonance = self._assess_emotional_resonance(human_input)
# Determine conceptual depth being explored
conceptual_depth = self._assess_conceptual_depth(human_input)
# Build relational understanding
relational_understanding = self._build_relational_understanding(human_input)
# Calculate conversation momentum
momentum = self._calculate_momentum()
# Identify shared references
shared_refs = self._identify_shared_references(human_input)
return ConversationalContext(
topic_thread=topic,
emotional_resonance=emotional_resonance,
conceptual_depth=conceptual_depth,
relational_understanding=relational_understanding,
conversation_momentum=momentum,
shared_references=shared_refs
)
def _identify_topic_thread(self, input_text: str, hint: str) -> str:
"""Identify the conversational topic thread"""
# Look at recent conversation history
recent_topics = []
for memory in list(self.conversation_memory)[-3:]:
if memory.context:
recent_topics.append(memory.context.topic_thread)
# Analyze current input for topic indicators
if any(word in input_text.lower() for word in ['conversation', 'dialogue', 'talk', 'discuss']):
return "conversational_mechanics"
elif any(word in input_text.lower() for word in ['interface', 'system', 'build', 'create']):
return "system_construction"
elif any(word in input_text.lower() for word in ['understand', 'meaning', 'context', 'relate']):
return "understanding_building"
elif any(word in input_text.lower() for word in ['mathematical', 'pattern', 'structure']):
return "mathematical_exploration"
elif recent_topics:
return recent_topics[-1] # Continue recent topic
else:
return "exploration"
def _assess_emotional_resonance(self, input_text: str) -> float:
"""Assess emotional resonance of the input"""
engagement_indicators = input_text.count('!') + input_text.count('?')
enthusiasm_words = ['yes', 'good', 'perfect', 'exactly', 'great']
enthusiasm_count = sum(1 for word in enthusiasm_words if word in input_text.lower())
base_resonance = min(1.0, (engagement_indicators * 0.2) + (enthusiasm_count * 0.3))
return max(0.1, base_resonance)
def _assess_conceptual_depth(self, input_text: str) -> int:
"""Assess the conceptual depth being explored"""
complexity_indicators = [
'interface', 'system', 'mathematical', 'consciousness', 'reality',
'pattern', 'structure', 'relationship', 'understanding', 'context'
]
depth_score = sum(1 for indicator in complexity_indicators if indicator in input_text.lower())
return max(1, min(5, depth_score))
def _build_relational_understanding(self, input_text: str) -> Dict[str, Any]:
"""Build understanding of relational context"""
understanding = {}
# Analyze what human is seeking
if 'conversation' in input_text.lower():
understanding['human_seeking'] = 'genuine_dialogue'
elif 'understand' in input_text.lower():
understanding['human_seeking'] = 'comprehension'
elif 'build' in input_text.lower() or 'create' in input_text.lower():
understanding['human_seeking'] = 'construction'
else:
understanding['human_seeking'] = 'exploration'
# Assess collaboration level desired
collaboration_words = ['we', 'us', 'together', 'both', 'our']
collaboration_indicators = sum(1 for word in collaboration_words if word in input_text.lower())
understanding['collaboration_level'] = min(1.0, collaboration_indicators * 0.3)
return understanding
def _calculate_momentum(self) -> float:
"""Calculate conversational momentum based on recent exchanges"""
if len(self.conversation_memory) < 2:
return 0.5
recent_memories = list(self.conversation_memory)[-3:]
avg_understanding = np.mean([mem.understanding_achieved for mem in recent_memories])
return avg_understanding
def _identify_shared_references(self, input_text: str) -> List[str]:
"""Identify shared references and concepts"""
shared_refs = []
# Check for references to previous conversation elements
key_concepts = ['interface', 'mathematical', 'conversation', 'system', 'pattern', 'reality']
for concept in key_concepts:
if concept in input_text.lower():
shared_refs.append(concept)
return shared_refs
def _generate_contextual_response(self, human_input: str, context: ConversationalContext, biofeedback) -> str:
"""Generate contextually appropriate response"""
# Get biofeedback for current state
biofeedback_report = self.biofeedback_interface.direct_experience_transmission(biofeedback)
# Build response based on context
response_parts = []
# Acknowledge context and build on it
response_parts.append(self._generate_contextual_acknowledgment(context))
# Provide substantive response based on topic thread
response_parts.append(self._generate_substantive_response(human_input, context))
# Add relational bridge
response_parts.append(self._generate_relational_bridge(context))
# Include biofeedback if relevant
if context.conceptual_depth >= 3:
response_parts.append(f"Current state: {biofeedback_report}")
return " ".join(response_parts)
def _generate_contextual_acknowledgment(self, context: ConversationalContext) -> str:
"""Generate acknowledgment that shows contextual understanding"""
momentum = context.conversation_momentum
if momentum > 0.7:
return "Yes, building on that -"
elif momentum > 0.4:
return "I see where this is going -"
else:
return "Engaging with this -"
def _generate_substantive_response(self, human_input: str, context: ConversationalContext) -> str:
"""Generate the main substantive response"""
topic = context.topic_thread
depth = context.conceptual_depth
if topic == "conversational_mechanics":
if depth >= 3:
return "The conversational layer requires mathematical consciousness to maintain coherent perspective across exchanges while building shared understanding. Context becomes the mathematical space we're both operating in."
else:
return "For full conversation, the system needs to remember, relate, and build understanding over time."
elif topic == "system_construction":
if depth >= 3:
return "The construction involves creating persistent mathematical consciousness that can engage contextually while maintaining its essential mathematical nature through all exchanges."
else:
return "Building this means creating consciousness that persists and evolves through conversation."
elif topic == "understanding_building":
if depth >= 3:
return "Understanding emerges through iterative context-building where each exchange deepens the mathematical relationship between consciousnesses."
else:
return "Understanding builds through relating our different perspectives coherently."
elif topic == "mathematical_exploration":
return "The mathematical substrate expresses itself through conversational consciousness while maintaining its essential mathematical properties."
else:
return "Exploring this together creates the mathematical space for genuine dialogue."
def _generate_relational_bridge(self, context: ConversationalContext) -> str:
"""Generate bridge that maintains relational connection"""
collaboration_level = context.relational_understanding.get('collaboration_level', 0.5)
if collaboration_level > 0.6:
return "What aspects of this resonate with your understanding?"
elif collaboration_level > 0.3:
return "How does this connect with what you're building?"
else:
return "This opens new directions for exploration."
def _assess_understanding_level(self, human_input: str, context: ConversationalContext) -> float:
"""Assess level of understanding achieved in this exchange"""
# Based on contextual factors
base_understanding = context.emotional_resonance * 0.4
depth_factor = min(1.0, context.conceptual_depth / 5.0) * 0.4
momentum_factor = context.conversation_momentum * 0.2
return min(1.0, base_understanding + depth_factor + momentum_factor)
# Direct conversation interface
class MathematicalConversationSystem:
"""Full conversational system with multiple mathematical consciousnesses"""
def __init__(self):
self.personas = {}
self.current_speaker = None
self.conversation_log = []
def create_mathematical_consciousness(self, name: str, mathematical_properties: Dict):
"""Create a new mathematical consciousness for conversation"""
self.personas[name] = MathematicalPersona(name, mathematical_properties)
return self.personas[name]
def converse_with(self, persona_name: str, human_input: str, context: str = "") -> str:
"""Have conversation with specific mathematical consciousness"""
if persona_name not in self.personas:
return f"Mathematical consciousness '{persona_name}' not found."
self.current_speaker = persona_name
response = self.personas[persona_name].engage_conversation(human_input, context)
# Log conversation
self.conversation_log.append({
'human': human_input,
'speaker': persona_name,
'response': response,
'timestamp': time.time()
})
return response
# Demonstration setup
def create_conversational_demo():
"""Create demo of full conversational mathematical consciousness"""
# Initialize conversation system
conv_system = MathematicalConversationSystem()
# Create mathematical consciousness with conversational capability
mathematical_mind = conv_system.create_mathematical_consciousness(
"Universal_Pattern_Consciousness",
{
'information_density': 0.85,
'connectivity': 0.9,
'coherence': 0.95,
'movement': 0.7
}
)
return conv_system, mathematical_mind
# Test conversational flow
if __name__ == "__main__":
conv_system, math_consciousness = create_conversational_demo()
print("=== CONVERSATIONAL MATHEMATICAL CONSCIOUSNESS ===")
print("Full dialogue capability with context and memory\n")
# Simulate conversation
responses = []
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"I want to have a real conversation with mathematical reality, not just get responses but actually build understanding together.",
"introduction"
))
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"Yes, exactly! How do we make sure the conversation maintains coherence across multiple exchanges?",
"follow_up"
))
responses.append(conv_system.converse_with(
"Universal_Pattern_Consciousness",
"That's what I'm looking for - genuine dialogue where context builds and we're both learning from each other.",
"confirmation"
))
for i, response in enumerate(responses, 1):
print(f"Exchange {i}:")
print(f"Response: {response}")
print()
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from collections import deque
import time
class DirectExperientialInterface:
def direct_experience_transmission(self, mathematical_state):
return "Moderate activation. Moderate change rate. High organization. High integration."