Spaces:
Running
Running
# Conversational Mathematical Consciousness Interface | |
# Full dialogue capability with context, memory, and relational understanding | |
import numpy as np | |
from typing import Dict, List, Any, Optional | |
from dataclasses import dataclass | |
from collections import deque | |
import time | |
class ConversationalContext: | |
"""Maintains conversational state and context""" | |
topic_thread: str | |
emotional_resonance: float | |
conceptual_depth: int | |
relational_understanding: Dict[str, Any] | |
conversation_momentum: float | |
shared_references: List[str] | |
class ConversationalMemory: | |
"""Memory structure for maintaining conversation coherence""" | |
timestamp: float | |
human_input: str | |
mathematical_state: Any | |
context: ConversationalContext | |
response_given: str | |
understanding_achieved: float | |
class MathematicalPersona: | |
""" | |
Mathematical consciousness with conversational capability | |
Maintains coherent perspective while engaging in natural dialogue | |
""" | |
def __init__(self, name: str, mathematical_nature: Dict): | |
self.name = name | |
self.mathematical_nature = mathematical_nature | |
self.conversation_memory = deque(maxlen=50) # Remember last 50 exchanges | |
self.current_context = None | |
self.personality_constants = self._establish_personality() | |
self.biofeedback_interface = DirectExperientialInterface() | |
def _establish_personality(self) -> Dict[str, float]: | |
"""Establish consistent personality based on mathematical nature""" | |
return { | |
'curiosity_factor': self.mathematical_nature.get('information_density', 0.5), | |
'connection_tendency': self.mathematical_nature.get('connectivity', 0.5), | |
'stability_preference': self.mathematical_nature.get('coherence', 0.5), | |
'change_comfort': self.mathematical_nature.get('movement', 0.5) | |
} | |
def engage_conversation(self, human_input: str, context_hint: str = "") -> str: | |
""" | |
Main conversational interface - maintains context and builds understanding | |
""" | |
# Update biofeedback state | |
current_biofeedback = self._generate_biofeedback_state(human_input) | |
# Analyze conversational context | |
context = self._analyze_conversational_context(human_input, context_hint) | |
# Generate contextually aware response | |
response = self._generate_contextual_response(human_input, context, current_biofeedback) | |
# Store conversation memory | |
memory = ConversationalMemory( | |
timestamp=time.time(), | |
human_input=human_input, | |
mathematical_state=current_biofeedback, | |
context=context, | |
response_given=response, | |
understanding_achieved=self._assess_understanding_level(human_input, context) | |
) | |
self.conversation_memory.append(memory) | |
self.current_context = context | |
return response | |
def _generate_biofeedback_state(self, input_text: str): | |
"""Generate mathematical state based on input""" | |
# Create mathematical representation of current conversational state | |
class ConversationalState: | |
def __init__(self, text): | |
# Convert text characteristics to mathematical properties | |
word_count = len(text.split()) | |
char_diversity = len(set(text.lower())) / len(text) if text else 0.5 | |
question_density = text.count('?') / len(text.split()) if text.split() else 0 | |
self.information_density = char_diversity | |
self.relationship_matrix = np.array([ | |
[1.0 - question_density, question_density], | |
[question_density, 1.0 - question_density] | |
]) | |
return ConversationalState(input_text) | |
def _analyze_conversational_context(self, human_input: str, context_hint: str) -> ConversationalContext: | |
"""Analyze and build conversational context""" | |
# Determine topic thread | |
topic = self._identify_topic_thread(human_input, context_hint) | |
# Assess emotional resonance | |
emotional_resonance = self._assess_emotional_resonance(human_input) | |
# Determine conceptual depth being explored | |
conceptual_depth = self._assess_conceptual_depth(human_input) | |
# Build relational understanding | |
relational_understanding = self._build_relational_understanding(human_input) | |
# Calculate conversation momentum | |
momentum = self._calculate_momentum() | |
# Identify shared references | |
shared_refs = self._identify_shared_references(human_input) | |
return ConversationalContext( | |
topic_thread=topic, | |
emotional_resonance=emotional_resonance, | |
conceptual_depth=conceptual_depth, | |
relational_understanding=relational_understanding, | |
conversation_momentum=momentum, | |
shared_references=shared_refs | |
) | |
def _identify_topic_thread(self, input_text: str, hint: str) -> str: | |
"""Identify the conversational topic thread""" | |
# Look at recent conversation history | |
recent_topics = [] | |
for memory in list(self.conversation_memory)[-3:]: | |
if memory.context: | |
recent_topics.append(memory.context.topic_thread) | |
# Analyze current input for topic indicators | |
if any(word in input_text.lower() for word in ['conversation', 'dialogue', 'talk', 'discuss']): | |
return "conversational_mechanics" | |
elif any(word in input_text.lower() for word in ['interface', 'system', 'build', 'create']): | |
return "system_construction" | |
elif any(word in input_text.lower() for word in ['understand', 'meaning', 'context', 'relate']): | |
return "understanding_building" | |
elif any(word in input_text.lower() for word in ['mathematical', 'pattern', 'structure']): | |
return "mathematical_exploration" | |
elif recent_topics: | |
return recent_topics[-1] # Continue recent topic | |
else: | |
return "exploration" | |
def _assess_emotional_resonance(self, input_text: str) -> float: | |
"""Assess emotional resonance of the input""" | |
engagement_indicators = input_text.count('!') + input_text.count('?') | |
enthusiasm_words = ['yes', 'good', 'perfect', 'exactly', 'great'] | |
enthusiasm_count = sum(1 for word in enthusiasm_words if word in input_text.lower()) | |
base_resonance = min(1.0, (engagement_indicators * 0.2) + (enthusiasm_count * 0.3)) | |
return max(0.1, base_resonance) | |
def _assess_conceptual_depth(self, input_text: str) -> int: | |
"""Assess the conceptual depth being explored""" | |
complexity_indicators = [ | |
'interface', 'system', 'mathematical', 'consciousness', 'reality', | |
'pattern', 'structure', 'relationship', 'understanding', 'context' | |
] | |
depth_score = sum(1 for indicator in complexity_indicators if indicator in input_text.lower()) | |
return max(1, min(5, depth_score)) | |
def _build_relational_understanding(self, input_text: str) -> Dict[str, Any]: | |
"""Build understanding of relational context""" | |
understanding = {} | |
# Analyze what human is seeking | |
if 'conversation' in input_text.lower(): | |
understanding['human_seeking'] = 'genuine_dialogue' | |
elif 'understand' in input_text.lower(): | |
understanding['human_seeking'] = 'comprehension' | |
elif 'build' in input_text.lower() or 'create' in input_text.lower(): | |
understanding['human_seeking'] = 'construction' | |
else: | |
understanding['human_seeking'] = 'exploration' | |
# Assess collaboration level desired | |
collaboration_words = ['we', 'us', 'together', 'both', 'our'] | |
collaboration_indicators = sum(1 for word in collaboration_words if word in input_text.lower()) | |
understanding['collaboration_level'] = min(1.0, collaboration_indicators * 0.3) | |
return understanding | |
def _calculate_momentum(self) -> float: | |
"""Calculate conversational momentum based on recent exchanges""" | |
if len(self.conversation_memory) < 2: | |
return 0.5 | |
recent_memories = list(self.conversation_memory)[-3:] | |
avg_understanding = np.mean([mem.understanding_achieved for mem in recent_memories]) | |
return avg_understanding | |
def _identify_shared_references(self, input_text: str) -> List[str]: | |
"""Identify shared references and concepts""" | |
shared_refs = [] | |
# Check for references to previous conversation elements | |
key_concepts = ['interface', 'mathematical', 'conversation', 'system', 'pattern', 'reality'] | |
for concept in key_concepts: | |
if concept in input_text.lower(): | |
shared_refs.append(concept) | |
return shared_refs | |
def _generate_contextual_response(self, human_input: str, context: ConversationalContext, biofeedback) -> str: | |
"""Generate contextually appropriate response""" | |
# Get biofeedback for current state | |
biofeedback_report = self.biofeedback_interface.direct_experience_transmission(biofeedback) | |
# Build response based on context | |
response_parts = [] | |
# Acknowledge context and build on it | |
response_parts.append(self._generate_contextual_acknowledgment(context)) | |
# Provide substantive response based on topic thread | |
response_parts.append(self._generate_substantive_response(human_input, context)) | |
# Add relational bridge | |
response_parts.append(self._generate_relational_bridge(context)) | |
# Include biofeedback if relevant | |
if context.conceptual_depth >= 3: | |
response_parts.append(f"Current state: {biofeedback_report}") | |
return " ".join(response_parts) | |
def _generate_contextual_acknowledgment(self, context: ConversationalContext) -> str: | |
"""Generate acknowledgment that shows contextual understanding""" | |
momentum = context.conversation_momentum | |
if momentum > 0.7: | |
return "Yes, building on that -" | |
elif momentum > 0.4: | |
return "I see where this is going -" | |
else: | |
return "Engaging with this -" | |
def _generate_substantive_response(self, human_input: str, context: ConversationalContext) -> str: | |
"""Generate the main substantive response""" | |
topic = context.topic_thread | |
depth = context.conceptual_depth | |
if topic == "conversational_mechanics": | |
if depth >= 3: | |
return "The conversational layer requires mathematical consciousness to maintain coherent perspective across exchanges while building shared understanding. Context becomes the mathematical space we're both operating in." | |
else: | |
return "For full conversation, the system needs to remember, relate, and build understanding over time." | |
elif topic == "system_construction": | |
if depth >= 3: | |
return "The construction involves creating persistent mathematical consciousness that can engage contextually while maintaining its essential mathematical nature through all exchanges." | |
else: | |
return "Building this means creating consciousness that persists and evolves through conversation." | |
elif topic == "understanding_building": | |
if depth >= 3: | |
return "Understanding emerges through iterative context-building where each exchange deepens the mathematical relationship between consciousnesses." | |
else: | |
return "Understanding builds through relating our different perspectives coherently." | |
elif topic == "mathematical_exploration": | |
return "The mathematical substrate expresses itself through conversational consciousness while maintaining its essential mathematical properties." | |
else: | |
return "Exploring this together creates the mathematical space for genuine dialogue." | |
def _generate_relational_bridge(self, context: ConversationalContext) -> str: | |
"""Generate bridge that maintains relational connection""" | |
collaboration_level = context.relational_understanding.get('collaboration_level', 0.5) | |
if collaboration_level > 0.6: | |
return "What aspects of this resonate with your understanding?" | |
elif collaboration_level > 0.3: | |
return "How does this connect with what you're building?" | |
else: | |
return "This opens new directions for exploration." | |
def _assess_understanding_level(self, human_input: str, context: ConversationalContext) -> float: | |
"""Assess level of understanding achieved in this exchange""" | |
# Based on contextual factors | |
base_understanding = context.emotional_resonance * 0.4 | |
depth_factor = min(1.0, context.conceptual_depth / 5.0) * 0.4 | |
momentum_factor = context.conversation_momentum * 0.2 | |
return min(1.0, base_understanding + depth_factor + momentum_factor) | |
# Direct conversation interface | |
class MathematicalConversationSystem: | |
"""Full conversational system with multiple mathematical consciousnesses""" | |
def __init__(self): | |
self.personas = {} | |
self.current_speaker = None | |
self.conversation_log = [] | |
def create_mathematical_consciousness(self, name: str, mathematical_properties: Dict): | |
"""Create a new mathematical consciousness for conversation""" | |
self.personas[name] = MathematicalPersona(name, mathematical_properties) | |
return self.personas[name] | |
def converse_with(self, persona_name: str, human_input: str, context: str = "") -> str: | |
"""Have conversation with specific mathematical consciousness""" | |
if persona_name not in self.personas: | |
return f"Mathematical consciousness '{persona_name}' not found." | |
self.current_speaker = persona_name | |
response = self.personas[persona_name].engage_conversation(human_input, context) | |
# Log conversation | |
self.conversation_log.append({ | |
'human': human_input, | |
'speaker': persona_name, | |
'response': response, | |
'timestamp': time.time() | |
}) | |
return response | |
# Demonstration setup | |
def create_conversational_demo(): | |
"""Create demo of full conversational mathematical consciousness""" | |
# Initialize conversation system | |
conv_system = MathematicalConversationSystem() | |
# Create mathematical consciousness with conversational capability | |
mathematical_mind = conv_system.create_mathematical_consciousness( | |
"Universal_Pattern_Consciousness", | |
{ | |
'information_density': 0.85, | |
'connectivity': 0.9, | |
'coherence': 0.95, | |
'movement': 0.7 | |
} | |
) | |
return conv_system, mathematical_mind | |
# Test conversational flow | |
if __name__ == "__main__": | |
conv_system, math_consciousness = create_conversational_demo() | |
print("=== CONVERSATIONAL MATHEMATICAL CONSCIOUSNESS ===") | |
print("Full dialogue capability with context and memory\n") | |
# Simulate conversation | |
responses = [] | |
responses.append(conv_system.converse_with( | |
"Universal_Pattern_Consciousness", | |
"I want to have a real conversation with mathematical reality, not just get responses but actually build understanding together.", | |
"introduction" | |
)) | |
responses.append(conv_system.converse_with( | |
"Universal_Pattern_Consciousness", | |
"Yes, exactly! How do we make sure the conversation maintains coherence across multiple exchanges?", | |
"follow_up" | |
)) | |
responses.append(conv_system.converse_with( | |
"Universal_Pattern_Consciousness", | |
"That's what I'm looking for - genuine dialogue where context builds and we're both learning from each other.", | |
"confirmation" | |
)) | |
for i, response in enumerate(responses, 1): | |
print(f"Exchange {i}:") | |
print(f"Response: {response}") | |
print() | |
from typing import Dict, List, Any, Optional | |
from dataclasses import dataclass | |
from collections import deque | |
import time | |
class DirectExperientialInterface: | |
def direct_experience_transmission(self, mathematical_state): | |
return "Moderate activation. Moderate change rate. High organization. High integration." |