Spaces:
Sleeping
Sleeping
# --- | |
# jupyter: | |
# jupytext: | |
# text_representation: | |
# extension: .py | |
# format_name: light | |
# format_version: '1.5' | |
# jupytext_version: 1.14.2 | |
# kernelspec: | |
# display_name: Python [conda env:bbytes] * | |
# language: python | |
# name: conda-env-bbytes-py | |
# --- | |
# + | |
import csv | |
import pandas as pd | |
from datetime import datetime, timedelta | |
import numpy as np | |
import datetime as dt | |
import matplotlib.pyplot as plt | |
from pathlib import Path | |
import time | |
import plotly.graph_objects as go | |
import plotly.io as pio | |
from PIL import Image | |
import streamlit as st | |
import plotly.express as px | |
import altair as alt | |
import dateutil.parser | |
from matplotlib.colors import LinearSegmentedColormap | |
# + | |
class color: | |
PURPLE = '\033[95m' | |
CYAN = '\033[96m' | |
DARKCYAN = '\033[36m' | |
BLUE = '\033[94m' | |
GREEN = '\033[92m' | |
YELLOW = '\033[93m' | |
RED = '\033[91m' | |
BOLD = '\033[1m' | |
UNDERLINE = '\033[4m' | |
END = '\033[0m' | |
def conditional_formatter(value): | |
return "${:.2f}".format(value) if not (abs(value) < 1.00) else "${:.5f}".format(value) | |
def print_PL(amnt, thresh, extras = "" ): | |
if amnt > 0: | |
return color.BOLD + color.GREEN + str(amnt) + extras + color.END | |
elif amnt < 0: | |
return color.BOLD + color.RED + str(amnt)+ extras + color.END | |
elif np.isnan(amnt): | |
return str(np.nan) | |
else: | |
return str(amnt + extras) | |
def get_headers(logtype): | |
otimeheader = "" | |
cheader = "" | |
plheader = "" | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "ByBit": | |
otimeheader = 'Create Time' | |
cheader = 'Contracts' | |
plheader = 'Closed P&L' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "BitGet": | |
otimeheader = 'Date' | |
cheader = 'Futures' | |
plheader = 'Realized P/L' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
if logtype == "MEXC": | |
otimeheader = 'Trade time' | |
cheader = 'Futures' | |
plheader = 'closing position' | |
fmat = '%Y/%m/%d %H:%M' | |
if logtype == "Binance": | |
otimeheader = 'Date' | |
cheader = 'Symbol' | |
plheader = 'Realized Profit' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
#if logtype == "Kucoin": | |
# otimeheader = 'Time' | |
# cheader = 'Contract' | |
# plheader = '' | |
# fmat = '%Y/%m/%d %H:%M:%S' | |
if logtype == "Kraken": | |
otimeheader = 'time' | |
cheader = 'asset' | |
plheader = 'amount' | |
fmat = '%Y-%m-%d %H:%M:%S.%f' | |
if logtype == "OkX": | |
otimeheader = '\ufeffOrder Time' | |
cheader = '\ufeffInstrument' | |
plheader = '\ufeffPL' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
return otimeheader.lower(), cheader.lower(), plheader.lower(), fmat | |
def get_coin_info(df_coin, principal_balance,plheader): | |
numtrades = int(len(df_coin)) | |
numwin = int(sum(df_coin[plheader] > 0)) | |
numloss = int(sum(df_coin[plheader] < 0)) | |
winrate = np.round(100*numwin/numtrades,4) | |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader]) | |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader]) | |
if grossloss != 0: | |
pfactor = -1*np.round(grosswin/grossloss,2) | |
else: | |
pfactor = np.nan | |
cum_PL = np.round(sum(df_coin[plheader].values),2) | |
cum_PL_perc = np.round(100*cum_PL/principal_balance,2) | |
mean_PL = np.round(sum(df_coin[plheader].values/len(df_coin)),2) | |
mean_PL_perc = np.round(100*mean_PL/principal_balance,2) | |
return numtrades, numwin, numloss, winrate, pfactor, cum_PL, cum_PL_perc, mean_PL, mean_PL_perc | |
def get_hist_info(df_coin, principal_balance,plheader): | |
numtrades = int(len(df_coin)) | |
numwin = int(sum(df_coin[plheader] > 0)) | |
numloss = int(sum(df_coin[plheader] < 0)) | |
if numtrades != 0: | |
winrate = np.round(100*numwin/numtrades,4) | |
else: | |
winrate = np.nan | |
grosswin = sum(df_coin[df_coin[plheader] > 0][plheader]) | |
grossloss = sum(df_coin[df_coin[plheader] < 0][plheader]) | |
if grossloss != 0: | |
pfactor = -1*np.round(grosswin/grossloss,2) | |
else: | |
pfactor = np.nan | |
return numtrades, numwin, numloss, winrate, pfactor | |
def get_rolling_stats(df, lev, otimeheader, days): | |
max_roll = (df[otimeheader].max() - df[otimeheader].min()).days | |
if max_roll >= days: | |
rollend = df[otimeheader].max()-timedelta(days=days) | |
rolling_df = df[df[otimeheader] >= rollend] | |
if len(rolling_df) > 0: | |
rolling_perc = rolling_df['Return Per Trade'].dropna().cumprod().values[-1]-1 | |
else: | |
rolling_perc = np.nan | |
else: | |
rolling_perc = np.nan | |
return 100*rolling_perc | |
def cc_coding(row): | |
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2022-12-16 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row) | |
def ctt_coding(row): | |
return ['background-color: lightgrey'] * len(row) if row['Exit Date'] <= datetime.strptime('2023-01-02 00:00:00','%Y-%m-%d %H:%M:%S').date() else [''] * len(row) | |
def my_style(v, props=''): | |
props = 'color:red' if v < 0 else 'color:green' | |
return props | |
def filt_df(df, cheader, symbol_selections): | |
df = df.copy() | |
df = df[df[cheader].isin(symbol_selections)] | |
return df | |
def drop_frac_cents(d): | |
D = np.floor(100*d)/100 | |
return D | |
def load_data(filename, account, exchange, otimeheader, fmat): | |
cols1 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors'] | |
cols2 = ['id','datetime', 'exchange', 'subaccount', 'pair', 'side', 'action', 'amount', 'price', 'errors', 'P/L', 'P/L %','exit price', 'Lev'] | |
old_df = pd.read_csv("history-old.csv", header = 0, names= cols1) | |
df = pd.read_csv(filename, header = 0, names= cols2) | |
df.loc[df['exit price'] > 0, 'price'] = df.loc[df['exit price'] > 0, 'exit price'] | |
df = pd.concat([old_df, df], ignore_index=True) | |
filtdf = df[(df.exchange == exchange) & (df.subaccount == account)].dropna() | |
if not filtdf.empty: | |
filtdf = filtdf.sort_values('datetime') | |
filtdf = filtdf.iloc[np.where(filtdf.action == 'open')[0][0]:, :] #get first open signal in dataframe | |
tnum = 0 | |
dca = 0 | |
newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %']) | |
for index, row in filtdf.iterrows(): | |
if row.action == 'open': | |
dca += 1 | |
tnum += 1 | |
sig = 'Long' if row.side == 'long' else 'Short' | |
temp = pd.DataFrame({'Trade' :[tnum], 'Signal': [sig], 'Entry Date':[row.datetime],'Buy Price': [row.price], 'Sell Price': [np.nan],'Exit Date': [np.nan], 'P/L per token': [np.nan], 'P/L %': [np.nan], 'DCA': [dca]}) | |
newdf = pd.concat([newdf,temp], ignore_index = True) | |
if row.action == 'close': | |
for j in np.arange(tnum-1, tnum-dca-1,-1): | |
newdf.loc[j,'Sell Price'] = row.price | |
newdf.loc[j,'Exit Date'] = row.datetime | |
dca = 0 | |
newdf['Buy Price'] = pd.to_numeric(newdf['Buy Price']) | |
newdf['Sell Price'] = pd.to_numeric(newdf['Sell Price']) | |
newdf['P/L per token'] = newdf['Sell Price'] - newdf['Buy Price'] | |
newdf['P/L %'] = 100*newdf['P/L per token']/newdf['Buy Price'] | |
newdf = newdf.dropna() | |
else: | |
newdf = pd.DataFrame([], columns=['Trade','Signal','Entry Date','Buy Price', 'Sell Price','Exit Date', 'P/L per token', 'P/L %']) | |
if account == 'Pure Bread (ByBit)': | |
tvdata = pd.read_csv('pb-history-old.csv',header = 0).drop('Unnamed: 0', axis=1) | |
elif account == 'PUMPernickel (ByBit)': | |
tvdata = pd.read_csv('pn-history-old.csv',header = 0).drop('Unnamed: 0', axis=1) | |
else: | |
tvdata = pd.DataFrame([]) | |
if tvdata.empty: | |
df = newdf | |
else: | |
df = pd.concat([tvdata, newdf], ignore_index =True) | |
df = df.sort_values('Entry Date', ascending = True) | |
df.index = range(len(df)) | |
df.Trade = df.index + 1 | |
dateheader = 'Date' | |
theader = 'Time' | |
df[dateheader] = [tradetimes.split(" ")[0] for tradetimes in df[otimeheader].values] | |
df[theader] = [tradetimes.split(" ")[1] for tradetimes in df[otimeheader].values] | |
df[otimeheader] = pd.to_datetime(df[otimeheader]) | |
df['Exit Date'] = pd.to_datetime(df['Exit Date']) | |
df[dateheader] = [dateutil.parser.parse(date).date() for date in df[dateheader]] | |
df[theader] = [dateutil.parser.parse(time).time() for time in df[theader]] | |
return df | |
def get_account_drawdown(trades, principal_balance): | |
max_draw_perc = 0.00 | |
beg = 0 | |
trades = np.hstack([0.0, trades.dropna().values]) + principal_balance | |
if len(trades) > 2: | |
for ind in range(len(trades)-1): | |
delta = 100*(trades[ind+1:] - trades[ind])/trades[ind] | |
max_draw_perc = min(max_draw_perc, delta.min()) | |
else: | |
max_draw = min(max_draw, trades) | |
max_draw_perc = 100*max_draw/(principal_balance) | |
return max_draw_perc | |
def get_pl(bot_selections, df, dca_amnt, dollar_cap, lev, principal_balance): | |
signal_map = {'Long': 1, 'Short':-1} | |
fees = .075/100 | |
if df.empty: | |
cum_pl = principal_balance | |
effective_return = 0.0 | |
else: | |
if bot_selections == 'ct': | |
dca_map = {1: dca_amnt/100, 2: dca_amnt/100, 3: dca_amnt/100, 4: dca_amnt/100, 5: dca_amnt/100, 6: dca_amnt/100} | |
df['DCA %'] = df['DCA'].map(dca_map) | |
df['Calculated Return %'] = (df['DCA %'])*(df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price']-2*fees) #accounts for fees on open and close of trade | |
df['DCA'] = np.floor(df['DCA'].values) | |
df['Return Per Trade'] = np.nan | |
df['Balance used in Trade'] = np.nan | |
df['New Balance'] = np.nan | |
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade') | |
df.loc[df['DCA']==1.0,'Return Per Trade'] = 1+lev*g['Return Per Trade'].values | |
df['Compounded Return'] = df['Return Per Trade'].cumprod() | |
df.loc[df['DCA']==1.0,'New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df.loc[df['DCA']==1.0,'Compounded Return']] | |
df.loc[df['DCA']==1.0,'Balance used in Trade'] = np.concatenate([[principal_balance], df.loc[df['DCA']==1.0,'New Balance'].values[:-1]]) | |
else: | |
df['Calculated Return %'] = (df['Signal'].map(signal_map)*(df['Sell Price']-df['Buy Price'])/df['Buy Price'])-2*fees #accounts for fees on open and close of trade | |
df['Return Per Trade'] = np.nan | |
g = df.groupby('Exit Date').sum(numeric_only=True)['Calculated Return %'].reset_index(name='Return Per Trade') | |
df['Return Per Trade'] = 1+lev*g['Return Per Trade'].values | |
df['Compounded Return'] = df['Return Per Trade'].cumprod() | |
df['New Balance'] = [min(dollar_cap/lev, bal*principal_balance) for bal in df['Compounded Return']] | |
df['Balance used in Trade'] = np.concatenate([[principal_balance], df['New Balance'].values[:-1]]) | |
df['Net P/L Per Trade'] = drop_frac_cents((df['Return Per Trade']-1)*df['Balance used in Trade']) | |
df['Cumulative P/L'] = df['Net P/L Per Trade'].cumsum() | |
cum_pl = df.loc[df.dropna().index[-1],'Cumulative P/L'] + principal_balance | |
effective_return = 100*((cum_pl - principal_balance)/principal_balance) | |
return df, cum_pl, effective_return | |
def runapp() -> None: | |
no_errors = True | |
otimeheader = 'Exit Date' | |
fmat = '%Y-%m-%d %H:%M:%S' | |
dollar_cap = 1000000000.00 | |
pn_data = load_data('history.csv', 'PUMPernickel (ByBit)', 'Bybit Futures', otimeheader, fmat) | |
pb_data = load_data('history.csv', 'Pure Bread (ByBit)', 'Bybit Futures', otimeheader, fmat) | |
df = pd.concat([pn_data, pb_data]) | |
ct_df = pn_data.copy(deep=True) | |
pb_df = pb_data.copy(deep=True) | |
dateheader = 'Date' | |
theader = 'Time' | |
with st.form("user input", ): | |
st.header("Choose your settings:") | |
if no_errors: | |
with st.container(): | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
try: | |
startdate = st.date_input("Start Date", value=pd.to_datetime(df[otimeheader]).min()) | |
except: | |
st.error("Please select a valid start date.") | |
no_errors = False | |
with col2: | |
try: | |
enddate = st.date_input("End Date", value=datetime.today()) | |
except: | |
st.error("Please select a valid end date.") | |
no_errors = False | |
with col3: | |
principal_balance = st.number_input('Starting Balance', min_value=0.00, value=1000.00, max_value= dollar_cap, step=.01) | |
#st.sidebar.subheader("Customize your Dashboard") | |
if no_errors and (enddate < startdate): | |
st.error("End Date must be later than Start date. Please try again.") | |
no_errors = False | |
if no_errors: | |
dca_amnt = 100/5 | |
with st.container(): | |
col1,col2 = st.columns(2) | |
with col1: | |
st.write("**Pumpernickel (PN)**") | |
ct_lev = st.number_input('PN Leverage', min_value=1, value=1, max_value= 2, step=1) | |
ct_alloc = st.number_input("PN Allocation (%)", min_value=0, value=50, max_value=100, step=1) | |
with col2: | |
st.write("**Pure Bread (PB)**") | |
pb_lev = st.number_input('PB Leverage', min_value=1, value=1, max_value= 3, step=1) | |
pb_alloc = st.number_input("PB Allocation (%)", min_value=0, value=50, max_value=100, step=1) | |
#hack way to get button centered | |
c = st.columns(5) | |
with c[2]: | |
submitted = st.form_submit_button("Get Cookin'!") | |
if submitted and principal_balance *ct_alloc/100 * ct_lev > dollar_cap: | |
ct_lev = np.floor(dollar_cap/(principal_balance*ct_alloc/100)) | |
st.error(f"WARNING:Allocated balance for Pumpernickel exceeds the ${dollar_cap} limit. Using maximum available leverage of {ct_lev}") | |
if submitted and principal_balance *pb_alloc/100 * pb_lev > dollar_cap: | |
pb_lev = np.floor(pb_dollar_cap/(principal_balance*pb_alloc/100)) | |
st.error(f"WARNING:Allocated balance for Pure Bread exceeds the ${dollar_cap} limit. Using maximum available leverage of {pb_lev}") | |
if submitted and (ct_alloc + pb_alloc) > 100: | |
st.error("Invalid allocation amounts. The total allocations must not exceed 100% of available funds. Please check your allocations and try again.") | |
no_errors = False | |
if submitted and (ct_alloc + pb_alloc) < 100: | |
st.error(f'WARNING: The allocation amounts you have selected do not sum to 100%. Only {ct_alloc + pb_alloc}% of the starting balance will be used for trading.') | |
if no_errors == True: | |
df = df[(df[dateheader] >= startdate) & (df[dateheader] <= enddate)] | |
ct_df = ct_df[(ct_df[dateheader] >= startdate) & (ct_df[dateheader] <= enddate)] | |
pb_df = pb_df[(pb_df[dateheader] >= startdate) & (pb_df[dateheader] <= enddate)] | |
if len(df) == 0: | |
st.error("There are no available trades matching your selections. Please try again!") | |
no_errors = False | |
ct_df, ct_cum_pl, ct_effective_return = get_pl('ct', ct_df, dca_amnt, dollar_cap, ct_lev, principal_balance*ct_alloc/100) | |
pb_df, pb_cum_pl, pb_effective_return = get_pl('pb', pb_df, dca_amnt, dollar_cap, pb_lev, principal_balance*pb_alloc/100) | |
combo = pd.concat([ct_df, pb_df], ignore_index = True).sort_values('Entry Date') | |
combo['Cumulative P/L'] = combo['Net P/L Per Trade'].cumsum() | |
max_draw = get_account_drawdown(combo['Cumulative P/L'], principal_balance) | |
cum_pl = ct_cum_pl + pb_cum_pl | |
effective_return = ct_alloc/100*ct_effective_return + pb_alloc/100*pb_effective_return | |
st.header(f"Bread Bundle Results") | |
with st.container(): | |
st.metric( | |
"Total Account Balance", | |
f"${cum_pl:.2f}", | |
f"{100*(cum_pl-principal_balance)/(principal_balance):.2f} %", | |
) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric( | |
"Pumpernickel Balance", | |
f"${ct_cum_pl:.2f}", | |
f"{ct_alloc*(ct_cum_pl-principal_balance*ct_alloc/100)/(principal_balance*ct_alloc/100):.2f} %", | |
) | |
with col2: | |
st.metric( | |
"Pure Bread Balance", | |
f"${pb_cum_pl:.2f}", | |
f"{pb_alloc*(pb_cum_pl-principal_balance*pb_alloc/100)/(principal_balance*pb_alloc/100):.2f} %", | |
) | |
ct_df.insert(1, 'Bot', ['PN']*len(ct_df)) | |
if ct_df.empty: | |
grouped_ct = pd.DataFrame([]) | |
else: | |
grouped_ct = ct_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'Net P/L Per Trade': 'mean', | |
'Return Per Trade': 'mean', | |
'Calculated Return %' : lambda x: np.round(ct_alloc*ct_lev*x.sum(),2), | |
'DCA': lambda x: int(np.floor(x.max()))}) | |
pb_df.insert(1, 'Bot', ['PB']*len(pb_df)) | |
if pb_df.empty: | |
grouped_pb = pd.DataFrame([]) | |
else: | |
grouped_pb = pb_df.groupby('Exit Date').agg({'Bot': 'first', 'Signal':'min','Entry Date': 'min','Exit Date': 'max','Buy Price': 'mean', | |
'Sell Price' : 'max', | |
'Net P/L Per Trade': 'mean', | |
'Return Per Trade': 'mean', | |
'Calculated Return %' : lambda x: np.round(pb_alloc*pb_lev*x.sum(),2)}) | |
all_dfs = [grouped_ct, grouped_pb] | |
df = pd.concat([d for d in all_dfs if not d.empty]) | |
df['Entry Date'] = pd.to_datetime(df['Entry Date']) | |
df['Exit Date'] = pd.to_datetime(df['Exit Date']) | |
df.index = range(len(df)) | |
df.sort_values('Exit Date', ascending = True, inplace=True) | |
# Create figure | |
fig = go.Figure() | |
pyLogo = Image.open("logo.png") | |
# Add trace | |
fig.add_trace( | |
go.Scatter(x=df['Exit Date'], y=np.round(df['Net P/L Per Trade'].cumsum().values,2), line_shape='spline', | |
line = {'smoothing': 1.0, 'color' : 'rgba(31, 119, 200,.8)'}, | |
name='Cumulative P/L') | |
) | |
dfdata = df[(df['Bot'] == 'PN')] | |
eth_buyhold = ((ct_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]]) | |
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(eth_buyhold.values,2), line_shape='spline', | |
line = {'smoothing': 1.0, 'color' :'red'}, name = 'ETH Buy & Hold Return') | |
) | |
dfdata = df[df['Bot'] == 'PB'] | |
doge_buyhold = ((pb_alloc)/100*principal_balance/dfdata['Buy Price'][dfdata.index[0]])*(dfdata['Buy Price']-dfdata['Buy Price'][dfdata.index[0]]) | |
fig.add_trace(go.Scatter(x=dfdata['Exit Date'], y=np.round(doge_buyhold.values,2), line_shape='spline', | |
line = {'smoothing': 1.0, 'color' :'green'}, name = 'DOGE Buy & Hold Return') | |
) | |
img_width = 2001 | |
img_height = 622 | |
fig.add_layout_image( | |
dict( | |
source=pyLogo, | |
xref="paper", | |
yref="paper", | |
x = 0.1, | |
y = 1, | |
xanchor ="left", yanchor = "top", | |
sizex= 1, | |
sizey= 1, | |
opacity=0.2, | |
layer = "below") | |
) | |
#style layout | |
fig.update_layout( | |
height = 550, | |
xaxis=dict( | |
title="Exit Date", | |
tickmode='array', | |
showgrid=False | |
), | |
yaxis=dict( | |
title="Cumulative P/L", | |
showgrid=False | |
), | |
legend=dict( | |
x=.05, | |
y=0.95, | |
traceorder="normal" | |
), | |
plot_bgcolor = 'rgba(10, 10, 10, 1)' | |
) | |
st.plotly_chart(fig, theme=None, use_container_width=True, height=550) | |
df['Per Trade Return Rate'] = df['Return Per Trade']-1 | |
totals = pd.DataFrame([], columns = ['# of Trades', 'Wins', 'Losses', 'Win Rate', 'Profit Factor']) | |
data = get_hist_info(df, principal_balance,'Per Trade Return Rate') | |
totals.loc[len(totals)] = list(i for i in data) | |
totals['Cum. P/L'] = cum_pl-principal_balance | |
totals['Cum. P/L (%)'] = 100*(cum_pl-principal_balance)/principal_balance | |
if df.empty: | |
st.error("Oops! None of the data provided matches your selection(s). Please try again.") | |
else: | |
with st.container(): | |
for row in totals.itertuples(): | |
c1, c2, c3, c4 = st.columns(4) | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.metric( | |
"Total Trades", | |
f"{row._1:.0f}", | |
) | |
with c1: | |
st.metric( | |
"Cumulative P/L", | |
f"${row._6:.2f}", | |
f"{row._7:.2f} %", | |
) | |
with col2: | |
st.metric( | |
"Wins", | |
f"{row.Wins:.0f}", | |
) | |
with c2: | |
st.metric( | |
"Profit Factor", | |
f"{row._5:.2f}", | |
) | |
with col3: | |
st.metric( | |
"Losses", | |
f"{row.Losses:.0f}", | |
) | |
with c3: | |
st.metric( | |
"Rolling 7 Days", | |
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 7)/100)*principal_balance:.2f}", | |
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 7) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 7))/100:.2f}%", | |
) | |
st.metric( | |
"Rolling 90 Days", | |
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 30)/100)*principal_balance:.2f}", | |
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 90) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 90))/100:.2f}%", | |
) | |
with col4: | |
st.metric( | |
"Win Rate", | |
f"{row._4:.1f}%", | |
) | |
with c4: | |
st.metric( | |
"Rolling 30 Days", | |
"",#f"{(1+get_rolling_stats(df,lev, otimeheader, 90)/100)*principal_balance:.2f}", | |
f"{(ct_alloc*get_rolling_stats(df[(df['Bot'] == 'PN')],ct_lev, otimeheader, 30) + pb_alloc*get_rolling_stats(df[(df['Bot'] == 'PB')],pb_lev, otimeheader, 30))/100:.2f}%", | |
) | |
st.metric( | |
"Max Drawdown", | |
"",#f"{np.round(100*max_draw/principal_balance,2)/100*principal_balance:.2f}", | |
f"{np.round(max_draw,2)}%", | |
) | |
df.rename(columns={'DCA' : '# of DCAs', 'Buy Price':'Avg. Buy Price', 'Sell Price': 'Avg. Sell Price', | |
'Net P/L Per Trade':'Net P/L', | |
'Calculated Return %':'P/L %'}, inplace=True) | |
if '# of DCAs' in df.columns: | |
df['# of DCAs'] = df['# of DCAs'].fillna(1.0) | |
df['# of DCAs'] = [int(i) for i in df['# of DCAs'].values] | |
else: | |
df['# of DCAs'] = np.ones(len(df)) | |
df.sort_values('Entry Date', ascending = True, inplace=True) | |
df.insert(0,'Trade',np.arange(1, len(df)+1)) | |
df.index = range(len(df)) | |
df = df.drop('Per Trade Return Rate', axis=1) | |
df = df.drop('Return Per Trade', axis=1) | |
st.subheader("Trade Logs") | |
st.dataframe(df.style.format({'Entry Date':'{:%m-%d-%Y %H:%M:%S}','Exit Date':'{:%m-%d-%Y %H:%M:%S}','Avg. Buy Price': conditional_formatter, 'Avg. Sell Price': conditional_formatter, 'Net P/L':'${:.2f}', 'P/L %':'{:.2f}%'})\ | |
.applymap(my_style,subset=['Net P/L'])\ | |
.applymap(my_style,subset=['P/L %']), use_container_width=True) | |
if __name__ == "__main__": | |
st.set_page_config( | |
"Trading Bot Dashboard", layout = 'wide' | |
) | |
runapp() | |
# - | |