|
|
|
import os |
|
import sys |
|
import subprocess |
|
|
|
def install_packages(): |
|
packages = ["gradio", "plotly", "seaborn", "pandas", "openpyxl", "scikit-learn", |
|
"fpdf2", "python-docx", "kaleido"] |
|
for package in packages: |
|
try: |
|
__import__(package) |
|
except ImportError: |
|
print(f"Instalando {package}...") |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", package]) |
|
|
|
install_packages() |
|
|
|
|
|
import os |
|
import io |
|
import tempfile |
|
import traceback |
|
import zipfile |
|
from typing import List, Tuple, Dict, Any, Optional |
|
from abc import ABC, abstractmethod |
|
from unittest.mock import MagicMock |
|
|
|
from PIL import Image |
|
import gradio as gr |
|
import plotly.graph_objects as go |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
from docx import Document |
|
from docx.shared import Inches |
|
from fpdf import FPDF |
|
from fpdf.enums import XPos, YPos |
|
|
|
|
|
C_TIME = 'tiempo' |
|
C_BIOMASS = 'biomass' |
|
C_SUBSTRATE = 'substrate' |
|
C_PRODUCT = 'product' |
|
COMPONENTS = [C_BIOMASS, C_SUBSTRATE, C_PRODUCT] |
|
|
|
|
|
|
|
class KineticModel(ABC): |
|
def __init__(self, name: str, display_name: str, param_names: List[str]): |
|
self.name, self.display_name, self.param_names = name, display_name, param_names |
|
self.num_params = len(param_names) |
|
|
|
@abstractmethod |
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: pass |
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: return 0.0 |
|
@abstractmethod |
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: pass |
|
@abstractmethod |
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: pass |
|
|
|
class LogisticModel(KineticModel): |
|
def __init__(self): super().__init__("logistic", "Logístico", ["Xo", "Xm", "um"]) |
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
xo, xm, um = params |
|
if xm <= 0 or xo <= 0 or xm < xo: return np.full_like(t, np.nan) |
|
exp_arg = np.clip(um * t, -700, 700); term_exp = np.exp(exp_arg) |
|
denominator = 1 - (xo / xm) * (1 - term_exp); denominator = np.where(denominator == 0, 1e-9, denominator) |
|
return (xo * term_exp) / denominator |
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
_, xm, um = params; return um * X * (1 - X / xm) if xm > 0 else 0.0 |
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
return [biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, max(biomass) if len(biomass) > 0 else 1.0, 0.1] |
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
return ([1e-9, initial_biomass, 1e-9], [max_biomass * 1.2, max_biomass * 5, np.inf]) |
|
|
|
class GompertzModel(KineticModel): |
|
def __init__(self): super().__init__("gompertz", "Gompertz", ["Xm", "um", "lag"]) |
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
xm, um, lag = params |
|
if xm <= 0 or um <= 0: return np.full_like(t, np.nan) |
|
exp_term = (um * np.e / xm) * (lag - t) + 1; exp_term_clipped = np.clip(exp_term, -700, 700) |
|
return xm * np.exp(-np.exp(exp_term_clipped)) |
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
xm, um, lag = params; k_val = um * np.e / xm |
|
u_val = k_val * (lag - t) + 1; u_val_clipped = np.clip(u_val, -np.inf, 700) |
|
return X * k_val * np.exp(u_val_clipped) if xm > 0 and X > 0 else 0.0 |
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0] |
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
return ([max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 5, np.inf, max(time) if len(time) > 0 else 1]) |
|
|
|
class MoserModel(KineticModel): |
|
def __init__(self): super().__init__("moser", "Moser", ["Xm", "um", "Ks"]) |
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
Xm, um, Ks = params; return Xm * (1 - np.exp(-um * (t - Ks))) if Xm > 0 and um > 0 else np.full_like(t, np.nan) |
|
def diff_function(self, X: float, t: float, params: List[float]) -> float: |
|
Xm, um, _ = params; return um * (Xm - X) if Xm > 0 else 0.0 |
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
return [max(biomass) if len(biomass) > 0 else 1.0, 0.1, 0] |
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
initial_biomass = min(biomass) if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
return ([max(1e-9, initial_biomass), 1e-9, -np.inf], [max_biomass * 5, np.inf, np.inf]) |
|
|
|
class BaranyiModel(KineticModel): |
|
def __init__(self): super().__init__("baranyi", "Baranyi", ["X0", "Xm", "um", "lag"]) |
|
def model_function(self, t: np.ndarray, *params: float) -> np.ndarray: |
|
X0, Xm, um, lag = params |
|
if X0 <= 0 or Xm <= X0 or um <= 0 or lag < 0: return np.full_like(t, np.nan) |
|
A_t = t + (1 / um) * np.log(np.exp(-um * t) + np.exp(-um * lag) - np.exp(-um * (t + lag))) |
|
exp_um_At = np.exp(np.clip(um * A_t, -700, 700)) |
|
numerator = Xm; denominator = 1 + ((Xm / X0) - 1) * (1 / exp_um_At) |
|
return numerator / np.where(denominator == 0, 1e-9, denominator) |
|
def get_initial_params(self, time: np.ndarray, biomass: np.ndarray) -> List[float]: |
|
return [biomass[0] if len(biomass) > 0 and biomass[0] > 1e-6 else 1e-3, max(biomass) if len(biomass) > 0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))] if len(biomass) > 1 else 0.0] |
|
def get_param_bounds(self, time: np.ndarray, biomass: np.ndarray) -> Tuple[List[float], List[float]]: |
|
initial_biomass = biomass[0] if len(biomass) > 0 else 1e-9; max_biomass = max(biomass) if len(biomass) > 0 else 1.0 |
|
return ([1e-9, max(1e-9, initial_biomass), 1e-9, 0], [max_biomass * 1.2, max_biomass * 10, np.inf, max(time) if len(time) > 0 else 1]) |
|
|
|
|
|
AVAILABLE_MODELS: Dict[str, KineticModel] = {model.name: model for model in [LogisticModel(), GompertzModel(), MoserModel(), BaranyiModel()]} |
|
|
|
|
|
class BioprocessFitter: |
|
def __init__(self, kinetic_model: KineticModel, maxfev: int = 50000): |
|
self.model, self.maxfev = kinetic_model, maxfev |
|
self.params: Dict[str, Dict[str, float]] = {c: {} for c in COMPONENTS} |
|
self.r2: Dict[str, float] = {}; self.rmse: Dict[str, float] = {} |
|
self.data_time: Optional[np.ndarray] = None |
|
self.data_means: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} |
|
self.data_stds: Dict[str, Optional[np.ndarray]] = {c: None for c in COMPONENTS} |
|
|
|
def _get_biomass_at_t(self, t: np.ndarray, p: List[float]) -> np.ndarray: return self.model.model_function(t, *p) |
|
def _get_initial_biomass(self, p: List[float]) -> float: |
|
if not p: return 0.0 |
|
if any(k in self.model.param_names for k in ["Xo", "X0"]): |
|
try: |
|
idx = self.model.param_names.index("Xo") if "Xo" in self.model.param_names else self.model.param_names.index("X0") |
|
return p[idx] |
|
except (ValueError, IndexError): pass |
|
return float(self.model.model_function(np.array([0]), *p)[0]) |
|
def _calc_integral(self, t: np.ndarray, p: List[float]) -> np.ndarray: |
|
X_t = self._get_biomass_at_t(t, p) |
|
if np.any(np.isnan(X_t)): return np.full_like(t, np.nan) |
|
integral_X = np.zeros_like(X_t) |
|
if len(t) > 1: |
|
dt = np.diff(t, prepend=t[0] - (t[1] - t[0] if len(t) > 1 else 1)) |
|
integral_X = np.cumsum(X_t * dt) |
|
return integral_X, X_t |
|
def substrate(self, t: np.ndarray, so: float, p_c: float, q: float, bio_p: List[float]) -> np.ndarray: |
|
integral, X_t = self._calc_integral(t, bio_p); X0 = self._get_initial_biomass(bio_p) |
|
return so - p_c * (X_t - X0) - q * integral |
|
def product(self, t: np.ndarray, po: float, alpha: float, beta: float, bio_p: List[float]) -> np.ndarray: |
|
integral, X_t = self._calc_integral(t, bio_p); X0 = self._get_initial_biomass(bio_p) |
|
return po + alpha * (X_t - X0) + beta * integral |
|
def process_data_from_df(self, df: pd.DataFrame) -> None: |
|
try: |
|
time_col = [c for c in df.columns if c[1].strip().lower() == C_TIME][0] |
|
self.data_time = df[time_col].dropna().to_numpy(); min_len = len(self.data_time) |
|
def extract(name: str) -> Tuple[np.ndarray, np.ndarray]: |
|
cols = [c for c in df.columns if c[1].strip().lower() == name.lower()] |
|
if not cols: return np.array([]), np.array([]) |
|
reps = [df[c].dropna().values[:min_len] for c in cols]; reps = [r for r in reps if len(r) == min_len] |
|
if not reps: return np.array([]), np.array([]) |
|
arr = np.array(reps); mean = np.mean(arr, axis=0) |
|
std = np.std(arr, axis=0, ddof=1) if arr.shape[0] > 1 else np.zeros_like(mean) |
|
return mean, std |
|
self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] = extract('Biomasa') |
|
self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE] = extract('Sustrato') |
|
self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT] = extract('Producto') |
|
except (IndexError, KeyError) as e: raise ValueError(f"Estructura de DataFrame inválida. Error: {e}") |
|
def _fit_component(self, func, t, data, p0, bounds, sigma=None, *args): |
|
try: |
|
if sigma is not None: sigma = np.where(sigma == 0, 1e-9, sigma) |
|
popt, _ = curve_fit(func, t, data, p0, bounds=bounds, maxfev=self.maxfev, ftol=1e-9, xtol=1e-9, sigma=sigma, absolute_sigma=bool(sigma is not None)) |
|
pred = func(t, *popt, *args) |
|
if np.any(np.isnan(pred)): return None, np.nan, np.nan |
|
r2 = 1 - np.sum((data - pred)**2) / np.sum((data - np.mean(data))**2) |
|
rmse = np.sqrt(mean_squared_error(data, pred)) |
|
return list(popt), r2, rmse |
|
except (RuntimeError, ValueError): return None, np.nan, np.nan |
|
def fit_all_models(self) -> None: |
|
t, bio_m, bio_s = self.data_time, self.data_means[C_BIOMASS], self.data_stds[C_BIOMASS] |
|
if t is None or bio_m is None or len(bio_m) == 0: return |
|
popt_bio = self._fit_biomass_model(t, bio_m, bio_s) |
|
if popt_bio: |
|
bio_p = list(self.params[C_BIOMASS].values()) |
|
if self.data_means[C_SUBSTRATE] is not None and len(self.data_means[C_SUBSTRATE]) > 0: self._fit_substrate_model(t, self.data_means[C_SUBSTRATE], self.data_stds[C_SUBSTRATE], bio_p) |
|
if self.data_means[C_PRODUCT] is not None and len(self.data_means[C_PRODUCT]) > 0: self._fit_product_model(t, self.data_means[C_PRODUCT], self.data_stds[C_PRODUCT], bio_p) |
|
def _fit_biomass_model(self, t, data, std): |
|
p0, bounds = self.model.get_initial_params(t, data), self.model.get_param_bounds(t, data) |
|
popt, r2, rmse = self._fit_component(self.model.model_function, t, data, p0, bounds, std) |
|
if popt: self.params[C_BIOMASS], self.r2[C_BIOMASS], self.rmse[C_BIOMASS] = dict(zip(self.model.param_names, popt)), r2, rmse |
|
return popt |
|
def _fit_substrate_model(self, t, data, std, bio_p): |
|
p0, b = [data[0], 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) |
|
popt, r2, rmse = self._fit_component(lambda t, so, p, q: self.substrate(t, so, p, q, bio_p), t, data, p0, b, std) |
|
if popt: self.params[C_SUBSTRATE], self.r2[C_SUBSTRATE], self.rmse[C_SUBSTRATE] = {'So': popt[0], 'p': popt[1], 'q': popt[2]}, r2, rmse |
|
def _fit_product_model(self, t, data, std, bio_p): |
|
p0, b = [data[0] if len(data)>0 else 0, 0.1, 0.01], ([0, -np.inf, -np.inf], [np.inf, np.inf, np.inf]) |
|
popt, r2, rmse = self._fit_component(lambda t, po, a, b: self.product(t, po, a, b, bio_p), t, data, p0, b, std) |
|
if popt: self.params[C_PRODUCT], self.r2[C_PRODUCT], self.rmse[C_PRODUCT] = {'Po': popt[0], 'alpha': popt[1], 'beta': popt[2]}, r2, rmse |
|
def system_ode(self, y, t, bio_p, sub_p, prod_p): |
|
X, _, _ = y; dXdt = self.model.diff_function(X, t, bio_p) |
|
return [dXdt, -sub_p.get('p',0)*dXdt - sub_p.get('q',0)*X, prod_p.get('alpha',0)*dXdt + prod_p.get('beta',0)*X] |
|
def solve_odes(self, t_fine): |
|
p = self.params; bio_d, sub_d, prod_d = p[C_BIOMASS], p[C_SUBSTRATE], p[C_PRODUCT] |
|
if not bio_d: return None, None, None |
|
try: |
|
bio_p = list(bio_d.values()); y0 = [self._get_initial_biomass(bio_p), sub_d.get('So',0), prod_d.get('Po',0)] |
|
sol = odeint(self.system_ode, y0, t_fine, args=(bio_p, sub_d, prod_d)) |
|
return sol[:, 0], sol[:, 1], sol[:, 2] |
|
except: return None, None, None |
|
def _generate_fine_time_grid(self, t_exp): return np.linspace(min(t_exp), max(t_exp), 500) if t_exp is not None and len(t_exp) > 1 else np.array([]) |
|
def get_model_curves_for_plot(self, t_fine, use_diff): |
|
if use_diff and self.model.diff_function(1, 1, [1]*self.model.num_params) != 0: return self.solve_odes(t_fine) |
|
X, S, P = None, None, None |
|
if self.params[C_BIOMASS]: |
|
bio_p = list(self.params[C_BIOMASS].values()); X = self.model.model_function(t_fine, *bio_p) |
|
if self.params[C_SUBSTRATE]: S = self.substrate(t_fine, *list(self.params[C_SUBSTRATE].values()), bio_p) |
|
if self.params[C_PRODUCT]: P = self.product(t_fine, *list(self.params[C_PRODUCT].values()), bio_p) |
|
return X, S, P |
|
def plot_individual_or_combined(self, cfg, mode): |
|
t_exp, t_fine = cfg['time_exp'], self._generate_fine_time_grid(cfg['time_exp']) |
|
X_m, S_m, P_m = self.get_model_curves_for_plot(t_fine, cfg.get('use_differential', False)) |
|
sns.set_style(cfg.get('style', 'whitegrid')) |
|
if mode == 'average': |
|
fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(10,15),sharex=True) |
|
fig.suptitle(f"Análisis: {cfg.get('exp_name','')} ({self.model.display_name})", fontsize=16); axes=[ax1,ax2,ax3] |
|
else: |
|
fig, ax1 = plt.subplots(figsize=(12,8)); fig.suptitle(f"Análisis: {cfg.get('exp_name','')} ({self.model.display_name})", fontsize=16) |
|
ax2,ax3 = ax1.twinx(),ax1.twinx(); ax3.spines["right"].set_position(("axes",1.18)); axes=[ax1,ax2,ax3] |
|
data_map = {C_BIOMASS:X_m, C_SUBSTRATE:S_m, C_PRODUCT:P_m} |
|
comb_styles = {C_BIOMASS:{'c':'#0072B2','mc':'#56B4E9','m':'o','ls':'-'}, C_SUBSTRATE:{'c':'#009E73','mc':'#34E499','m':'s','ls':'--'}, C_PRODUCT:{'c':'#D55E00','mc':'#F0E442','m':'^','ls':'-.'}} |
|
for ax, comp in zip(axes, COMPONENTS): |
|
ylabel, data, std, model_data = cfg.get('axis_labels',{}).get(f'{comp}_label',comp.capitalize()), cfg.get(f'{comp}_exp'), cfg.get(f'{comp}_std'), data_map.get(comp) |
|
if mode == 'combined': |
|
s = comb_styles[comp]; pc, lc, ms, ls = s['c'], s['mc'], s['m'], s['ls'] |
|
else: |
|
pc,lc,ms,ls = cfg.get(f'{comp}_point_color'), cfg.get(f'{comp}_line_color'), cfg.get(f'{comp}_marker_style'), cfg.get(f'{comp}_line_style') |
|
ax_c = pc if mode == 'combined' else 'black'; ax.set_ylabel(ylabel,color=ax_c); ax.tick_params(axis='y',labelcolor=ax_c) |
|
if data is not None and len(data)>0: |
|
if cfg.get('show_error_bars') and std is not None and np.any(std>0): ax.errorbar(t_exp, data, yerr=std, fmt=ms, color=pc, label=f'{comp.capitalize()} (Datos)', capsize=cfg.get('error_cap_size',3), elinewidth=cfg.get('error_line_width',1)) |
|
else: ax.plot(t_exp, data, ls='', marker=ms, color=pc, label=f'{comp.capitalize()} (Datos)') |
|
if model_data is not None and len(model_data)>0: ax.plot(t_fine, model_data, ls=ls, color=lc, label=f'{comp.capitalize()} (Modelo)') |
|
if mode=='average' and cfg.get('show_legend',True): ax.legend(loc=cfg.get('legend_pos','best')) |
|
if mode=='average' and cfg.get('show_params',True) and self.params[comp]: |
|
decs = cfg.get('decimal_places',3); p_txt='\n'.join([f"{k}={format_number(v,decs)}" for k,v in self.params[comp].items()]) |
|
full_txt=f"{p_txt}\nR²={format_number(self.r2.get(comp,0),3)}, RMSE={format_number(self.rmse.get(comp,0),3)}" |
|
pos_x,ha = (0.95,'right') if 'right' in cfg.get('params_pos','upper right') else (0.05,'left') |
|
ax.text(pos_x,0.95,full_txt,transform=ax.transAxes,va='top',ha=ha,bbox=dict(boxstyle='round,pad=0.4',fc='wheat',alpha=0.7)) |
|
if mode=='combined' and cfg.get('show_legend',True): |
|
h1,l1=axes[0].get_legend_handles_labels(); h2,l2=axes[1].get_legend_handles_labels(); h3,l3=axes[2].get_legend_handles_labels() |
|
axes[0].legend(handles=h1+h2+h3, labels=l1+l2+l3, loc=cfg.get('legend_pos','best')) |
|
axes[-1].set_xlabel(cfg.get('axis_labels',{}).get('x_label','Tiempo')); plt.tight_layout() |
|
if mode=='combined': fig.subplots_adjust(right=0.8) |
|
return fig |
|
|
|
|
|
|
|
def format_number(value: Any, decimals: int) -> str: |
|
""" |
|
Formatea un número para su visualización. Si decimals es 0, usa un formato inteligente. |
|
""" |
|
if not isinstance(value, (int, float, np.number)) or pd.isna(value): |
|
return "" if pd.isna(value) else str(value) |
|
|
|
decimals = int(decimals) |
|
|
|
if decimals == 0: |
|
if 0 < abs(value) < 1: |
|
return f"{value:.2e}" |
|
else: |
|
return str(int(round(value, 0))) |
|
|
|
return str(round(value, decimals)) |
|
|
|
def plot_model_comparison_matplotlib(plot_config: Dict, models_results: List[Dict]) -> plt.Figure: |
|
""" |
|
Crea un gráfico de comparación de modelos estático usando Matplotlib/Seaborn. |
|
""" |
|
time_exp = plot_config['time_exp'] |
|
|
|
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp) |
|
num_models = len(models_results) |
|
|
|
palettes = { |
|
C_BIOMASS: sns.color_palette("Blues", num_models), |
|
C_SUBSTRATE: sns.color_palette("Greens", num_models), |
|
C_PRODUCT: sns.color_palette("Reds", num_models) |
|
} |
|
line_styles = ['-', '--', '-.', ':'] |
|
|
|
sns.set_style(plot_config.get('style', 'whitegrid')) |
|
fig, ax1 = plt.subplots(figsize=(12, 8)) |
|
|
|
|
|
ax1.set_xlabel(plot_config['axis_labels']['x_label']) |
|
ax1.set_ylabel(plot_config['axis_labels']['biomass_label'], color="navy", fontsize=12) |
|
ax1.tick_params(axis='y', labelcolor="navy") |
|
ax2 = ax1.twinx() |
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.22)) |
|
ax2.set_ylabel(plot_config['axis_labels']['substrate_label'], color="darkgreen", fontsize=12) |
|
ax2.tick_params(axis='y', labelcolor="darkgreen") |
|
ax3.set_ylabel(plot_config['axis_labels']['product_label'], color="darkred", fontsize=12) |
|
ax3.tick_params(axis='y', labelcolor="darkred") |
|
|
|
|
|
data_markers = {C_BIOMASS: 'o', C_SUBSTRATE: 's', C_PRODUCT: '^'} |
|
for ax, key, color, face in [(ax1, C_BIOMASS, 'navy', 'skyblue'), (ax2, C_SUBSTRATE, 'darkgreen', 'lightgreen'), (ax3, C_PRODUCT, 'darkred', 'lightcoral')]: |
|
data_exp = plot_config.get(f'{key}_exp') |
|
data_std = plot_config.get(f'{key}_std') |
|
if data_exp is not None: |
|
if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0): |
|
ax.errorbar(time_exp, data_exp, yerr=data_std, fmt=data_markers[key], color=color, label=f'{key.capitalize()} (Datos)', zorder=10, markersize=8, markerfacecolor=face, markeredgecolor=color, capsize=plot_config.get('error_cap_size', 3), elinewidth=plot_config.get('error_line_width', 1)) |
|
else: |
|
ax.plot(time_exp, data_exp, ls='', marker=data_markers[key], label=f'{key.capitalize()} (Datos)', zorder=10, ms=8, mfc=face, mec=color, mew=1.5) |
|
|
|
|
|
for i, res in enumerate(models_results): |
|
ls = line_styles[i % len(line_styles)] |
|
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])) |
|
model_display_name = model_info.display_name |
|
for key_short, ax, name_long in [('X', ax1, C_BIOMASS), ('S', ax2, C_SUBSTRATE), ('P', ax3, C_PRODUCT)]: |
|
if res.get(key_short) is not None: |
|
ax.plot(time_fine, res[key_short], color=palettes[name_long][i], ls=ls, label=f'{name_long.capitalize()} ({model_display_name})', alpha=0.9) |
|
|
|
fig.subplots_adjust(left=0.3, right=0.78, top=0.92, bottom=0.35 if plot_config.get('show_params') else 0.1) |
|
|
|
if plot_config.get('show_legend'): |
|
h1, l1 = ax1.get_legend_handles_labels(); h2, l2 = ax2.get_legend_handles_labels(); h3, l3 = ax3.get_legend_handles_labels() |
|
fig.legend(h1 + h2 + h3, l1 + l2 + l3, loc='center left', bbox_to_anchor=(0.0, 0.5), fancybox=True, shadow=True, fontsize='small') |
|
|
|
if plot_config.get('show_params'): |
|
total_width = 0.95; box_width = total_width / num_models; start_pos = (1.0 - total_width) / 2 |
|
for i, res in enumerate(models_results): |
|
model_info = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])) |
|
text = f"**{model_info.display_name}**\n" + _generate_model_param_text(res, plot_config.get('decimal_places', 3)) |
|
fig.text(start_pos + i * box_width, 0.01, text, transform=fig.transFigure, fontsize=7.5, va='bottom', ha='left', bbox=dict(boxstyle='round,pad=0.4', fc='ivory', ec='gray', alpha=0.9)) |
|
|
|
fig.suptitle(f"Comparación de Modelos: {plot_config.get('exp_name', '')}", fontsize=16) |
|
return fig |
|
|
|
def plot_model_comparison_plotly(plot_config: Dict, models_results: List[Dict]) -> go.Figure: |
|
""" |
|
Crea un gráfico de comparación de modelos interactivo usando Plotly. |
|
""" |
|
fig = go.Figure() |
|
time_exp = plot_config['time_exp'] |
|
time_fine = BioprocessFitter(list(AVAILABLE_MODELS.values())[0])._generate_fine_time_grid(time_exp) |
|
num_models = len(models_results) |
|
palettes = { |
|
C_BIOMASS: sns.color_palette("Blues", n_colors=num_models).as_hex(), |
|
C_SUBSTRATE: sns.color_palette("Greens", n_colors=num_models).as_hex(), |
|
C_PRODUCT: sns.color_palette("Reds", n_colors=num_models).as_hex() |
|
} |
|
line_styles, data_markers = ['solid', 'dash', 'dot', 'dashdot'], {C_BIOMASS: 'circle-open', C_SUBSTRATE: 'square-open', C_PRODUCT: 'diamond-open'} |
|
|
|
for key, y_axis, color in [(C_BIOMASS, 'y1', 'navy'), (C_SUBSTRATE, 'y2', 'darkgreen'), (C_PRODUCT, 'y3', 'darkred')]: |
|
data_exp, data_std = plot_config.get(f'{key}_exp'), plot_config.get(f'{key}_std') |
|
if data_exp is not None: |
|
error_y_config = dict(type='data', array=data_std, visible=True) if plot_config.get('show_error_bars') and data_std is not None and np.any(data_std > 0) else None |
|
fig.add_trace(go.Scatter(x=time_exp, y=data_exp, mode='markers', name=f'{key.capitalize()} (Datos)', marker=dict(color=color, size=10, symbol=data_markers[key], line=dict(width=2)), error_y=error_y_config, yaxis=y_axis, legendgroup="data")) |
|
|
|
for i, res in enumerate(models_results): |
|
ls = line_styles[i % len(line_styles)] |
|
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name |
|
if res.get('X') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['X'], mode='lines', name=f'Biomasa ({model_display_name})', line=dict(color=palettes[C_BIOMASS][i], dash=ls), legendgroup=res["name"])) |
|
if res.get('S') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['S'], mode='lines', name=f'Sustrato ({model_display_name})', line=dict(color=palettes[C_SUBSTRATE][i], dash=ls), yaxis='y2', legendgroup=res["name"])) |
|
if res.get('P') is not None: fig.add_trace(go.Scatter(x=time_fine, y=res['P'], mode='lines', name=f'Producto ({model_display_name})', line=dict(color=palettes[C_PRODUCT][i], dash=ls), yaxis='y3', legendgroup=res["name"])) |
|
|
|
if plot_config.get('show_params'): |
|
x_positions = np.linspace(0, 1, num_models * 2 + 1)[1::2] |
|
for i, res in enumerate(models_results): |
|
model_display_name = AVAILABLE_MODELS.get(res["name"], MagicMock(display_name=res["name"])).display_name |
|
text = f"<b>{model_display_name}</b><br>" + _generate_model_param_text(res, plot_config.get('decimal_places', 3)).replace('\n', '<br>') |
|
fig.add_annotation(text=text, align='left', showarrow=False, xref='paper', yref='paper', x=x_positions[i], y=-0.35, bordercolor='gray', borderwidth=1, bgcolor='ivory', opacity=0.9) |
|
|
|
fig.update_layout( |
|
title=f"Comparación de Modelos (Interactivo): {plot_config.get('exp_name', '')}", |
|
xaxis=dict(domain=[0.18, 0.82]), |
|
yaxis=dict(title=plot_config['axis_labels']['biomass_label'], titlefont=dict(color='navy'), tickfont=dict(color='navy')), |
|
yaxis2=dict(title=plot_config['axis_labels']['substrate_label'], titlefont=dict(color='darkgreen'), tickfont=dict(color='darkgreen'), overlaying='y', side='right'), |
|
yaxis3=dict(title=plot_config['axis_labels']['product_label'], titlefont=dict(color='darkred'), tickfont=dict(color='darkred'), overlaying='y', side='right', position=0.85), |
|
legend=dict(traceorder="grouped", yanchor="middle", y=0.5, xanchor="right", x=-0.15), |
|
margin=dict(l=200, r=150, b=250 if plot_config.get('show_params') else 80, t=80), |
|
template="seaborn", |
|
showlegend=plot_config.get('show_legend', True) |
|
) |
|
return fig |
|
|
|
def _generate_model_param_text(result: Dict, decimals: int) -> str: |
|
"""Genera el texto formateado de los parámetros para las cajas de anotación.""" |
|
text = "" |
|
for comp in COMPONENTS: |
|
if params := result.get('params', {}).get(comp): |
|
p_str = ', '.join([f"{k}={format_number(v, decimals)}" for k, v in params.items()]) |
|
r2 = result.get('r2', {}).get(comp, 0) |
|
rmse = result.get('rmse', {}).get(comp, 0) |
|
text += f"<i>{comp[:4].capitalize()}:</i> {p_str}\n(R²={format_number(r2, 3)}, RMSE={format_number(rmse, 3)})\n" |
|
return text.strip() |
|
|
|
def create_zip_file(image_list: List[Any]) -> Optional[str]: |
|
if not image_list: |
|
gr.Warning("No hay gráficos para descargar.") |
|
return None |
|
try: |
|
zip_buffer = io.BytesIO() |
|
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf: |
|
for i, fig in enumerate(image_list): |
|
buf = io.BytesIO() |
|
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido")) |
|
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig) |
|
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG') |
|
else: continue |
|
buf.seek(0) |
|
zf.writestr(f"grafico_{i+1}.png", buf.read()) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as tmp: |
|
tmp.write(zip_buffer.getvalue()) |
|
return tmp.name |
|
except Exception as e: |
|
traceback.print_exc() |
|
gr.Error(f"Error al crear el archivo ZIP: {e}") |
|
return None |
|
|
|
def create_word_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]: |
|
if not image_list and (table_df is None or table_df.empty): |
|
gr.Warning("No hay datos ni gráficos para crear el reporte.") |
|
return None |
|
try: |
|
doc = Document() |
|
doc.add_heading('Reporte de Análisis de Cinéticas', 0) |
|
if table_df is not None and not table_df.empty: |
|
doc.add_heading('Tabla de Resultados', level=1) |
|
table = doc.add_table(rows=1, cols=len(table_df.columns), style='Table Grid') |
|
for i, col in enumerate(table_df.columns): table.cell(0, i).text = str(col) |
|
for _, row in table_df.iterrows(): |
|
cells = table.add_row().cells |
|
for i, val in enumerate(row): cells[i].text = str(format_number(val, decimals)) |
|
if image_list: |
|
doc.add_page_break() |
|
doc.add_heading('Gráficos Generados', level=1) |
|
for i, fig in enumerate(image_list): |
|
buf = io.BytesIO() |
|
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido")) |
|
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig) |
|
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG') |
|
else: continue |
|
buf.seek(0) |
|
doc.add_paragraph(f'Gráfico {i+1}', style='Heading 3') |
|
doc.add_picture(buf, width=Inches(6.0)) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp: |
|
doc.save(tmp.name) |
|
return tmp.name |
|
except Exception as e: |
|
traceback.print_exc() |
|
gr.Error(f"Error al crear el reporte de Word: {e}") |
|
return None |
|
|
|
def create_pdf_report(image_list: List[Any], table_df: pd.DataFrame, decimals: int) -> Optional[str]: |
|
if not image_list and (table_df is None or table_df.empty): |
|
gr.Warning("No hay datos ni gráficos para crear el reporte.") |
|
return None |
|
try: |
|
pdf = FPDF() |
|
pdf.set_auto_page_break(auto=True, margin=15) |
|
pdf.add_page() |
|
pdf.set_font("Helvetica", 'B', 16) |
|
pdf.cell(0, 10, 'Reporte de Análisis de Cinéticas', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='C') |
|
if table_df is not None and not table_df.empty: |
|
pdf.ln(10) |
|
pdf.set_font("Helvetica", 'B', 12) |
|
pdf.cell(0, 10, 'Tabla de Resultados', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L') |
|
pdf.set_font("Helvetica", 'B', 8) |
|
effective_page_width = pdf.w - 2 * pdf.l_margin |
|
num_cols = len(table_df.columns) |
|
col_width = effective_page_width / num_cols if num_cols > 0 else 0 |
|
if num_cols > 15: pdf.set_font_size(6) |
|
elif num_cols > 10: pdf.set_font_size(7) |
|
for col in table_df.columns: pdf.cell(col_width, 10, str(col), border=1, align='C') |
|
pdf.ln() |
|
pdf.set_font("Helvetica", '', 7) |
|
if num_cols > 15: pdf.set_font_size(5) |
|
elif num_cols > 10: pdf.set_font_size(6) |
|
for _, row in table_df.iterrows(): |
|
for val in row: pdf.cell(col_width, 10, str(format_number(val, decimals)), border=1, align='R') |
|
pdf.ln() |
|
if image_list: |
|
for i, fig in enumerate(image_list): |
|
pdf.add_page() |
|
pdf.set_font("Helvetica", 'B', 12) |
|
pdf.cell(0, 10, f'Gráfico {i+1}', new_x=XPos.LMARGIN, new_y=YPos.NEXT, align='L') |
|
pdf.ln(5) |
|
buf = io.BytesIO() |
|
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido")) |
|
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', dpi=200, bbox_inches='tight'); plt.close(fig) |
|
elif isinstance(fig, Image.Image): fig.save(buf, 'PNG') |
|
else: continue |
|
buf.seek(0) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp_img: |
|
tmp_img.write(buf.read()) |
|
pdf.image(tmp_img.name, x=None, y=None, w=pdf.w - 20) |
|
os.remove(tmp_img.name) |
|
pdf_bytes = pdf.output() |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp: |
|
tmp.write(pdf_bytes) |
|
return tmp.name |
|
except Exception as e: |
|
traceback.print_exc() |
|
gr.Error(f"Error al crear el reporte PDF: {e}") |
|
return None |
|
|
|
|
|
def run_analysis(file, model_names, mode, engine, exp_names, settings): |
|
if not file: return [], pd.DataFrame(), "Error: Sube un archivo Excel.", pd.DataFrame() |
|
if not model_names: return [], pd.DataFrame(), "Error: Selecciona un modelo.", pd.DataFrame() |
|
try: xls = pd.ExcelFile(file.name) |
|
except Exception as e: return [], pd.DataFrame(), f"Error al leer archivo: {e}", pd.DataFrame() |
|
figs, results_data, msgs = [], [], [] |
|
exp_list = [n.strip() for n in exp_names.split('\n') if n.strip()] |
|
for i, sheet in enumerate(xls.sheet_names): |
|
exp_name = exp_list[i] if i < len(exp_list) else f"Hoja '{sheet}'" |
|
try: |
|
df = pd.read_excel(xls, sheet_name=sheet, header=[0,1]) |
|
reader = BioprocessFitter(list(AVAILABLE_MODELS.values())[0]) |
|
reader.process_data_from_df(df) |
|
if reader.data_time is None: msgs.append(f"WARN: Sin datos de tiempo en '{sheet}'."); continue |
|
cfg = settings.copy(); cfg.update({'exp_name':exp_name, 'time_exp':reader.data_time}) |
|
for c in COMPONENTS: cfg[f'{c}_exp'], cfg[f'{c}_std'] = reader.data_means[c], reader.data_stds[c] |
|
t_fine, plot_results = reader._generate_fine_time_grid(reader.data_time), [] |
|
for m_name in model_names: |
|
if m_name not in AVAILABLE_MODELS: msgs.append(f"WARN: Modelo '{m_name}' no disponible."); continue |
|
fitter = BioprocessFitter(AVAILABLE_MODELS[m_name], maxfev=int(settings.get('maxfev',50000))) |
|
fitter.data_time, fitter.data_means, fitter.data_stds = reader.data_time, reader.data_means, reader.data_stds |
|
fitter.fit_all_models() |
|
row = {'Experimento':exp_name, 'Modelo':fitter.model.display_name} |
|
for c in COMPONENTS: |
|
if fitter.params[c]: row.update({f'{c.capitalize()}_{k}':v for k,v in fitter.params[c].items()}) |
|
row[f'R2_{c.capitalize()}'], row[f'RMSE_{c.capitalize()}'] = fitter.r2.get(c), fitter.rmse.get(c) |
|
results_data.append(row) |
|
if mode in ["average","combined"]: |
|
if hasattr(fitter,'plot_individual_or_combined'): figs.append(fitter.plot_individual_or_combined(cfg,mode)) |
|
else: |
|
X,S,P = fitter.get_model_curves_for_plot(t_fine, settings.get('use_differential',False)) |
|
plot_results.append({'name':m_name, 'X':X, 'S':S, 'P':P, 'params':fitter.params, 'r2':fitter.r2, 'rmse':fitter.rmse}) |
|
if mode=="model_comparison" and plot_results: |
|
plot_func = plot_model_comparison_plotly if engine=='Plotly (Interactivo)' else plot_model_comparison_matplotlib |
|
if 'plot_model_comparison_plotly' in globals(): figs.append(plot_func(cfg, plot_results)) |
|
except Exception as e: msgs.append(f"ERROR en '{sheet}': {e}"); traceback.print_exc() |
|
msg = "Análisis completado."+("\n"+"\n".join(msgs) if msgs else "") |
|
df_res = pd.DataFrame(results_data).dropna(axis=1,how='all') |
|
if not df_res.empty: |
|
id_c, p_c, m_c = ['Experimento','Modelo'], sorted([c for c in df_res.columns if '_' in c and 'R2' not in c and 'RMSE' not in c]), sorted([c for c in df_res.columns if 'R2' in c or 'RMSE' in c]) |
|
df_res = df_res[[c for c in id_c+p_c+m_c if c in df_res.columns]] |
|
df_ui = df_res.copy() |
|
for c in df_ui.select_dtypes(include=np.number).columns: df_ui[c] = df_ui[c].apply(lambda x:format_number(x,settings.get('decimal_places',3)) if pd.notna(x) else '') |
|
else: df_ui = pd.DataFrame() |
|
return figs, df_ui, msg, df_res |
|
|
|
|
|
|
|
def create_gradio_interface() -> gr.Blocks: |
|
""" |
|
Crea y configura la interfaz de usuario completa con Gradio. |
|
""" |
|
|
|
MODEL_CHOICES = [(model.display_name, model.name) for model in AVAILABLE_MODELS.values()] |
|
|
|
DEFAULT_MODELS = [m.name for m in list(AVAILABLE_MODELS.values())[:3]] |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as demo: |
|
gr.Markdown("# 🔬 Analizador de Cinéticas de Bioprocesos") |
|
gr.Markdown("Sube tus datos, selecciona modelos, personaliza los gráficos y exporta los resultados.") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("1. Guía y Formato de Datos"): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
gr.Markdown( |
|
""" |
|
### Bienvenido al Analizador de Cinéticas |
|
Esta herramienta te permite ajustar modelos matemáticos a tus datos de crecimiento microbiano. |
|
|
|
**Pasos a seguir:** |
|
1. Prepara tu archivo Excel según el formato especificado a la derecha. |
|
2. Ve a la pestaña **"2. Configuración y Ejecución"**. |
|
3. Sube tu archivo y selecciona los modelos cinéticos que deseas probar. |
|
4. Ajusta las opciones de visualización y análisis según tus preferencias. |
|
5. Haz clic en **"Analizar y Graficar"**. |
|
6. Explora los resultados en la pestaña **"3. Resultados"**. |
|
|
|
### Fórmulas de los Modelos |
|
- **Logístico:** $ X(t) = \\frac{X_0 X_m e^{\\mu_m t}}{X_m - X_0 + X_0 e^{\\mu_m t}} $ |
|
- **Gompertz:** $ X(t) = X_m \\exp\\left(-\\exp\\left(\\frac{\\mu_m e}{X_m}(\\lambda-t)+1\\right)\\right) $ |
|
- **Moser:** $X(t) = X_m (1 - e^{-\\mu_m (t - K_s)})$ |
|
""" |
|
) |
|
with gr.Column(scale=3): |
|
gr.Markdown("### Formato del Archivo Excel") |
|
gr.Markdown("Usa una **cabecera de dos niveles** para tus datos. La primera fila es el nombre de la réplica (ej. 'Rep1', 'Rep2') y la segunda el tipo de dato ('Tiempo', 'Biomasa', 'Sustrato', 'Producto').") |
|
df_ejemplo = pd.DataFrame({ |
|
('Rep1', 'Tiempo'): [0, 2, 4, 6], ('Rep1', 'Biomasa'): [0.1, 0.5, 2.5, 5.0], ('Rep1', 'Sustrato'): [10.0, 9.5, 7.0, 2.0], |
|
('Rep2', 'Tiempo'): [0, 2, 4, 6], ('Rep2', 'Biomasa'): [0.12, 0.48, 2.6, 5.2], ('Rep2', 'Sustrato'): [10.2, 9.6, 7.1, 2.1], |
|
}) |
|
gr.DataFrame(df_ejemplo, interactive=False, label="Ejemplo de Formato") |
|
|
|
|
|
with gr.TabItem("2. Configuración y Ejecución"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
file_input = gr.File(label="Sube tu archivo Excel (.xlsx)", file_types=['.xlsx']) |
|
exp_names_input = gr.Textbox(label="Nombres de Experimentos (opcional)", placeholder="Nombre Hoja 1\nNombre Hoja 2\n...", lines=3, info="Un nombre por línea, en el mismo orden que las hojas del Excel.") |
|
model_selection_input = gr.CheckboxGroup(choices=MODEL_CHOICES, label="Modelos a Probar", value=DEFAULT_MODELS) |
|
analysis_mode_input = gr.Radio(["average", "combined", "model_comparison"], label="Modo de Análisis", value="average", info="Average: Gráficos separados.\nCombined: Un gráfico con 3 ejes.\nComparación: Gráfico global comparativo.") |
|
plotting_engine_input = gr.Radio(["Seaborn (Estático)", "Plotly (Interactivo)"], label="Motor Gráfico (en modo Comparación)", value="Plotly (Interactivo)") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Accordion("Opciones Generales de Análisis", open=True): |
|
decimal_places_input = gr.Slider(0, 10, value=3, step=1, label="Precisión Decimal de Parámetros", info="0 para notación científica automática.") |
|
show_params_input = gr.Checkbox(label="Mostrar Parámetros en Gráfico", value=True) |
|
show_legend_input = gr.Checkbox(label="Mostrar Leyenda en Gráfico", value=True) |
|
use_differential_input = gr.Checkbox(label="Usar EDO para graficar", value=False, info="Simula con ecuaciones diferenciales en lugar de la fórmula integral.") |
|
maxfev_input = gr.Number(label="Iteraciones Máximas de Ajuste (maxfev)", value=50000) |
|
|
|
with gr.Accordion("Etiquetas de los Ejes", open=True): |
|
with gr.Row(): xlabel_input = gr.Textbox(label="Etiqueta Eje X", value="Tiempo (h)", interactive=True) |
|
with gr.Row(): |
|
ylabel_biomass_input = gr.Textbox(label="Etiqueta Biomasa", value="Biomasa (g/L)", interactive=True) |
|
ylabel_substrate_input = gr.Textbox(label="Etiqueta Sustrato", value="Sustrato (g/L)", interactive=True) |
|
ylabel_product_input = gr.Textbox(label="Etiqueta Producto", value="Producto (g/L)", interactive=True) |
|
|
|
with gr.Accordion("Opciones de Estilo (Modo 'Average' y 'Combined')", open=False): |
|
style_input = gr.Dropdown(['whitegrid', 'darkgrid', 'white', 'dark', 'ticks'], label="Estilo General (Matplotlib)", value='whitegrid') |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("**Biomasa**"); biomass_point_color_input = gr.ColorPicker(label="Color Puntos", value='#0072B2'); biomass_line_color_input = gr.ColorPicker(label="Color Línea", value='#56B4E9'); biomass_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='o'); biomass_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='-') |
|
with gr.Column(): |
|
gr.Markdown("**Sustrato**"); substrate_point_color_input = gr.ColorPicker(label="Color Puntos", value='#009E73'); substrate_line_color_input = gr.ColorPicker(label="Color Línea", value='#34E499'); substrate_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='s'); substrate_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='--') |
|
with gr.Column(): |
|
gr.Markdown("**Producto**"); product_point_color_input = gr.ColorPicker(label="Color Puntos", value='#D55E00'); product_line_color_input = gr.ColorPicker(label="Color Línea", value='#F0E442'); product_marker_style_input = gr.Dropdown(['o','s','^','D','p','*','X'], label="Marcador", value='^'); product_line_style_input = gr.Dropdown(['-','--','-.',':'], label="Estilo Línea", value='-.') |
|
with gr.Row(): |
|
legend_pos_input = gr.Radio(["best","upper right","upper left","lower left","lower right","center"], label="Posición Leyenda", value="best") |
|
params_pos_input = gr.Radio(["upper right","upper left","lower right","lower left"], label="Posición Parámetros", value="upper right") |
|
|
|
with gr.Accordion("Opciones de Barra de Error", open=False): |
|
show_error_bars_input = gr.Checkbox(label="Mostrar barras de error (si hay réplicas)", value=True) |
|
error_cap_size_input = gr.Slider(1, 10, 3, step=1, label="Tamaño Tapa Error") |
|
error_line_width_input = gr.Slider(0.5, 5, 1.0, step=0.5, label="Grosor Línea Error") |
|
|
|
simulate_btn = gr.Button("Analizar y Graficar", variant="primary") |
|
|
|
|
|
with gr.TabItem("3. Resultados"): |
|
status_output = gr.Textbox(label="Estado del Análisis", interactive=False, lines=2) |
|
gallery_output = gr.Gallery(label="Gráficos Generados", columns=1, height=600, object_fit="contain", preview=True) |
|
with gr.Accordion("Descargar Reportes y Gráficos", open=True): |
|
with gr.Row(): |
|
zip_btn = gr.Button("Descargar Gráficos (.zip)"); word_btn = gr.Button("Descargar Reporte (.docx)"); pdf_btn = gr.Button("Descargar Reporte (.pdf)") |
|
download_output = gr.File(label="Archivo de Descarga", interactive=False) |
|
gr.Markdown("### Tabla de Resultados Numéricos"); table_output = gr.DataFrame(wrap=True) |
|
with gr.Row(): |
|
excel_btn = gr.Button("Descargar Tabla (.xlsx)"); csv_btn = gr.Button("Descargar Tabla (.csv)") |
|
download_table_output = gr.File(label="Descargar Tabla", interactive=False) |
|
df_for_export = gr.State(pd.DataFrame()); figures_for_export = gr.State([]) |
|
|
|
|
|
demo.queue() |
|
|
|
def simulation_wrapper(file, models, mode, engine, names, use_diff, s_par, s_leg, maxfev, decimals, x_label, bio_label, sub_label, prod_label, style, s_err, cap, lw, l_pos, p_pos, bio_pc, bio_lc, bio_ms, bio_ls, sub_pc, sub_lc, sub_ms, sub_ls, prod_pc, prod_lc, prod_ms, prod_ls): |
|
try: |
|
def rgba_to_hex(rgba_string: str) -> str: |
|
if not isinstance(rgba_string, str) or rgba_string.startswith('#'): return rgba_string |
|
try: |
|
parts = rgba_string.lower().replace('rgba', '').replace('rgb', '').replace('(', '').replace(')', '') |
|
r, g, b, *_ = map(float, parts.split(',')); return f'#{int(r):02x}{int(g):02x}{int(b):02x}' |
|
except (ValueError, TypeError): return "#000000" |
|
|
|
plot_settings = { |
|
'decimal_places': int(decimals), 'use_differential': use_diff, 'style': style, 'show_legend': s_leg, 'show_params': s_par, 'maxfev': int(maxfev), |
|
'axis_labels': {'x_label': x_label, 'biomass_label': bio_label, 'substrate_label': sub_label, 'product_label': prod_label}, |
|
'legend_pos': l_pos, 'params_pos': p_pos, 'show_error_bars': s_err, 'error_cap_size': cap, 'error_line_width': lw, |
|
f'{C_BIOMASS}_point_color': rgba_to_hex(bio_pc), f'{C_BIOMASS}_line_color': rgba_to_hex(bio_lc), f'{C_BIOMASS}_marker_style': bio_ms, f'{C_BIOMASS}_line_style': bio_ls, |
|
f'{C_SUBSTRATE}_point_color': rgba_to_hex(sub_pc), f'{C_SUBSTRATE}_line_color': rgba_to_hex(sub_lc), f'{C_SUBSTRATE}_marker_style': sub_ms, f'{C_SUBSTRATE}_line_style': sub_ls, |
|
f'{C_PRODUCT}_point_color': rgba_to_hex(prod_pc), f'{C_PRODUCT}_line_color': rgba_to_hex(prod_lc), f'{C_PRODUCT}_marker_style': prod_ms, f'{C_PRODUCT}_line_style': prod_ls, |
|
} |
|
figures, df_ui, msg, df_export = run_analysis(file, models, mode, engine, names, plot_settings) |
|
image_list = [] |
|
for fig in figures: |
|
buf = io.BytesIO() |
|
if isinstance(fig, go.Figure): buf.write(fig.to_image(format="png", scale=2, engine="kaleido")) |
|
elif isinstance(fig, plt.Figure): fig.savefig(buf, format='png', bbox_inches='tight', dpi=150); plt.close(fig) |
|
buf.seek(0); image_list.append(Image.open(buf).convert("RGB")) |
|
return image_list, df_ui, msg, df_export, figures |
|
except Exception as e: |
|
print(f"--- ERROR CAPTURADO EN WRAPPER ---\n{traceback.format_exc()}"); return [], pd.DataFrame(), f"Error Crítico: {e}", pd.DataFrame(), [] |
|
|
|
all_inputs = [ |
|
file_input, model_selection_input, analysis_mode_input, plotting_engine_input, exp_names_input, |
|
use_differential_input, show_params_input, show_legend_input, maxfev_input, decimal_places_input, |
|
xlabel_input, ylabel_biomass_input, ylabel_substrate_input, ylabel_product_input, |
|
style_input, show_error_bars_input, error_cap_size_input, error_line_width_input, legend_pos_input, params_pos_input, |
|
biomass_point_color_input, biomass_line_color_input, biomass_marker_style_input, biomass_line_style_input, |
|
substrate_point_color_input, substrate_line_color_input, substrate_marker_style_input, substrate_line_style_input, |
|
product_point_color_input, product_line_color_input, product_marker_style_input, product_line_style_input |
|
] |
|
all_outputs = [gallery_output, table_output, status_output, df_for_export, figures_for_export] |
|
|
|
simulate_btn.click(fn=simulation_wrapper, inputs=all_inputs, outputs=all_outputs) |
|
zip_btn.click(fn=create_zip_file, inputs=[figures_for_export], outputs=[download_output]) |
|
word_btn.click(fn=create_word_report, inputs=[figures_for_export, df_for_export, decimal_places_input], outputs=[download_output]) |
|
pdf_btn.click(fn=create_pdf_report, inputs=[figures_for_export, df_for_export, decimal_places_input], outputs=[download_output]) |
|
|
|
def export_table_to_file(df: pd.DataFrame, file_format: str) -> Optional[str]: |
|
if df is None or df.empty: gr.Warning("No hay datos para exportar."); return None |
|
suffix = ".xlsx" if file_format == "excel" else ".csv" |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp: |
|
if file_format == "excel": df.to_excel(tmp.name, index=False) |
|
else: df.to_csv(tmp.name, index=False, encoding='utf-8-sig') |
|
return tmp.name |
|
|
|
excel_btn.click(fn=lambda df: export_table_to_file(df, "excel"), inputs=[df_for_export], outputs=[download_table_output]) |
|
csv_btn.click(fn=lambda df: export_table_to_file(df, "csv"), inputs=[df_for_export], outputs=[download_table_output]) |
|
|
|
return demo |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
""" |
|
Este bloque se ejecuta solo cuando el script es llamado directamente. |
|
Crea la interfaz de Gradio y la lanza, haciendo que la aplicación |
|
esté disponible en una URL local (y opcionalmente pública si share=True). |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
gradio_app = create_gradio_interface() |
|
|
|
|
|
|
|
|
|
gradio_app.launch(share=True, debug=True) |