C2MV's picture
Update app.py
fa429b6 verified
import gradio as gr
import PyPDF2
import pandas as pd
import numpy as np
import io
import os
import json
import zipfile
import tempfile
from typing import Dict, List, Tuple, Union, Optional, Generator
import re
from pathlib import Path
import openpyxl
from dataclasses import dataclass, asdict
from enum import Enum
from docx import Document
from docx.shared import Inches, Pt, RGBColor
from docx.enum.text import WD_ALIGN_PARAGRAPH
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
import matplotlib.pyplot as plt
from datetime import datetime
from openai import OpenAI
# --- CONFIGURACIÓN Y CONSTANTES ---
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.environ.get("NEBIUS_API_KEY")
)
# Se añade la nueva etiqueta para el selector de columna
TRANSLATIONS = {
'en': {
'title': '🧬 Scalable Biotech Model Analyzer',
'subtitle': 'Analyzes large sets of model fitting results using a chunking strategy',
'upload_files': '📁 Upload fitting results (CSV/Excel)',
'chunk_column_label': '🔬 Select Column for Grouping Experiments',
'chunk_column_info': 'Choose the column that identifies each unique experiment. This is used for chunking.',
'select_model': '🤖 IA Model (editable)',
'select_language': '🌐 Language',
'select_theme': '🎨 Theme',
'detail_level': '📋 Analysis detail level',
'detailed': 'Detailed',
'summarized': 'Summarized',
'analyze_button': '🚀 Analyze and Compare Models',
'export_format': '📄 Export format',
'export_button': '💾 Export Report',
'comparative_analysis': '📊 Comparative Analysis',
'implementation_code': '💻 Implementation Code',
'data_format': '📋 Expected data format',
'loading': 'Loading...',
'error_no_api': 'Please configure NEBIUS_API_KEY in HuggingFace Space secrets',
'error_no_files': 'Please upload fitting result files to analyze',
'report_exported': 'Report exported successfully as',
'additional_specs': '📝 Additional specifications for analysis',
'additional_specs_placeholder': 'Add any specific requirements or focus areas for the analysis...',
'output_tokens_per_chunk': '🔢 Max output tokens per chunk (1k-32k)',
'token_info': 'ℹ️ Token usage information',
'input_token_count': 'Input tokens used',
'output_token_count': 'Output tokens used',
'total_token_count': 'Total tokens used',
'token_cost': 'Estimated cost',
'thinking_process': '🧠 Thinking Process',
'analysis_report': '📊 Analysis Report',
'code_output': '💻 Implementation Code',
'token_usage': '💰 Token Usage'
},
'es': {
'title': '🧬 Analizador Escalable de Modelos Biotecnológicos',
'subtitle': 'Analiza grandes conjuntos de datos de ajuste de modelos usando una estrategia por partes',
'upload_files': '📁 Subir resultados de ajuste (CSV/Excel)',
'chunk_column_label': '🔬 Seleccionar Columna para Agrupar Experimentos',
'chunk_column_info': 'Elige la columna que identifica cada experimento único. Se usará para dividir el análisis.',
'select_model': '🤖 Modelo IA (editable)',
'select_language': '🌐 Idioma',
'select_theme': '🎨 Tema',
'detail_level': '📋 Nivel de detalle del análisis',
'detailed': 'Detallado',
'summarized': 'Resumido',
'analyze_button': '🚀 Analizar y Comparar Modelos',
'export_format': '📄 Formato de exportación',
'export_button': '💾 Exportar Reporte',
'comparative_analysis': '📊 Análisis Comparativo',
'implementation_code': '💻 Código de Implementación',
'data_format': '📋 Formato de datos esperado',
'loading': 'Cargando...',
'error_no_api': 'Por favor configura NEBIUS_API_KEY en los secretos del Space',
'error_no_files': 'Por favor sube archivos con resultados de ajuste para analizar',
'report_exported': 'Reporte exportado exitosamente como',
'additional_specs': '📝 Especificaciones adicionales para el análisis',
'additional_specs_placeholder': 'Agregue cualquier requerimiento específico o áreas de enfoque para el análisis...',
'output_tokens_per_chunk': '🔢 Max tokens de salida por pieza (1k-32k)',
'token_info': 'ℹ️ Información de uso de tokens',
'input_token_count': 'Tokens de entrada usados',
'output_token_count': 'Tokens de salida usados',
'total_token_count': 'Total de tokens usados',
'token_cost': 'Costo estimado',
'thinking_process': '🧠 Proceso de Pensamiento',
'analysis_report': '📊 Reporte de Análisis',
'code_output': '💻 Código de Implementación',
'token_usage': '💰 Uso de Tokens'
}
}
THEMES = { 'light': gr.themes.Soft(), 'dark': gr.themes.Base() }
QWEN_MODELS = {
"Qwen/Qwen3-14B": {"max_context_tokens": 40960, "input_cost": 0.0000007, "output_cost": 0.0000021},
"Qwen/Qwen3-7B": {"max_context_tokens": 40960, "input_cost": 0.00000035, "output_cost": 0.00000105},
"Qwen/Qwen1.5-14B": {"max_context_tokens": 40960, "input_cost": 0.0000007, "output_cost": 0.0000021}
}
# --- CLASES DE UTILIDAD (Se asume que existen, omitidas por brevedad) ---
class FileProcessor:
"""Clase para procesar diferentes tipos de archivos"""
@staticmethod
def extract_text_from_pdf(pdf_file) -> str:
"""Extrae texto de un archivo PDF"""
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
return f"Error reading PDF: {str(e)}"
@staticmethod
def read_csv(csv_file) -> pd.DataFrame:
"""Lee archivo CSV"""
try:
return pd.read_csv(io.BytesIO(csv_file))
except Exception as e:
return None
@staticmethod
def read_excel(excel_file) -> pd.DataFrame:
"""Lee archivo Excel"""
try:
return pd.read_excel(io.BytesIO(excel_file))
except Exception as e:
return None
@staticmethod
def extract_from_zip(zip_file) -> List[Tuple[str, bytes]]:
"""Extrae archivos de un ZIP"""
files = []
try:
with zipfile.ZipFile(io.BytesIO(zip_file), 'r') as zip_ref:
for file_name in zip_ref.namelist():
if not file_name.startswith('__MACOSX'):
file_data = zip_ref.read(file_name)
files.append((file_name, file_data))
except Exception as e:
print(f"Error processing ZIP: {e}")
return files
class ReportExporter:
"""Clase para exportar reportes a diferentes formatos"""
@staticmethod
def export_to_docx(content: str, filename: str, language: str = 'en') -> str:
"""Exporta el contenido a un archivo DOCX"""
doc = Document()
# Configurar estilos
title_style = doc.styles['Title']
title_style.font.size = Pt(24)
title_style.font.bold = True
heading_style = doc.styles['Heading 1']
heading_style.font.size = Pt(18)
heading_style.font.bold = True
# Título
title_text = {
'en': 'Comparative Analysis Report - Biotechnological Models',
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
}
doc.add_heading(title_text.get(language, title_text['en']), 0)
# Fecha
date_text = {
'en': 'Generated on',
'es': 'Generado el',
}
doc.add_paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
doc.add_paragraph()
# Procesar contenido
lines = content.split('\n')
current_paragraph = None
for line in lines:
line = line.strip()
if line.startswith('###'):
doc.add_heading(line.replace('###', '').strip(), level=2)
elif line.startswith('##'):
doc.add_heading(line.replace('##', '').strip(), level=1)
elif line.startswith('#'):
doc.add_heading(line.replace('#', '').strip(), level=0)
elif line.startswith('**') and line.endswith('**'):
# Texto en negrita
p = doc.add_paragraph()
run = p.add_run(line.replace('**', ''))
run.bold = True
elif line.startswith('- ') or line.startswith('* '):
# Lista
doc.add_paragraph(line[2:], style='List Bullet')
elif line.startswith(tuple('0123456789')):
# Lista numerada
doc.add_paragraph(line, style='List Number')
elif line == '---' or line.startswith('==='):
# Separador
doc.add_paragraph('_' * 50)
elif line:
# Párrafo normal
doc.add_paragraph(line)
# Guardar documento
doc.save(filename)
return filename
@staticmethod
def export_to_pdf(content: str, filename: str, language: str = 'en') -> str:
"""Exporta el contenido a un archivo PDF"""
# Crear documento PDF
doc = SimpleDocTemplate(filename, pagesize=letter)
story = []
styles = getSampleStyleSheet()
# Estilos personalizados
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Title'],
fontSize=24,
textColor=colors.HexColor('#1f4788'),
spaceAfter=30
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading1'],
fontSize=16,
textColor=colors.HexColor('#2e5090'),
spaceAfter=12
)
# Título
title_text = {
'en': 'Comparative Analysis Report - Biotechnological Models',
'es': 'Informe de Análisis Comparativo - Modelos Biotecnológicos',
}
story.append(Paragraph(title_text.get(language, title_text['en']), title_style))
# Fecha
date_text = {
'en': 'Generated on',
'es': 'Generado el',
}
story.append(Paragraph(f"{date_text.get(language, date_text['en'])}: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", styles['Normal']))
story.append(Spacer(1, 0.5*inch))
# Procesar contenido
lines = content.split('\n')
for line in lines:
line = line.strip()
if not line:
story.append(Spacer(1, 0.2*inch))
elif line.startswith('###'):
story.append(Paragraph(line.replace('###', '').strip(), styles['Heading3']))
elif line.startswith('##'):
story.append(Paragraph(line.replace('##', '').strip(), styles['Heading2']))
elif line.startswith('#'):
story.append(Paragraph(line.replace('#', '').strip(), heading_style))
elif line.startswith('**') and line.endswith('**'):
text = line.replace('**', '')
story.append(Paragraph(f"<b>{text}</b>", styles['Normal']))
elif line.startswith('- ') or line.startswith('* '):
story.append(Paragraph(f"• {line[2:]}", styles['Normal']))
elif line == '---' or line.startswith('==='):
story.append(Spacer(1, 0.3*inch))
story.append(Paragraph("_" * 70, styles['Normal']))
story.append(Spacer(1, 0.3*inch))
else:
# Limpiar caracteres especiales para PDF
clean_line = line.replace('📊', '[GRAPH]').replace('🎯', '[TARGET]').replace('🔍', '[SEARCH]').replace('💡', '[TIP]')
story.append(Paragraph(clean_line, styles['Normal']))
# Construir PDF
doc.build(story)
return filename
# --- CLASE AIAnalyzer (MODIFICADA PARA ACEPTAR chunk_column) ---
class AIAnalyzer:
"""Clase para análisis con IA que implementa una estrategia 'chunk-and-stitch'."""
def __init__(self, client):
self.client = client
self.token_usage = {}
self.reset_token_usage()
def reset_token_usage(self):
self.token_usage = {'input_tokens': 0, 'output_tokens': 0, 'total_tokens': 0, 'estimated_cost': 0.0}
def _update_token_usage(self, model_name: str, usage):
if not usage: return
self.token_usage['input_tokens'] += usage.prompt_tokens
self.token_usage['output_tokens'] += usage.completion_tokens
self.token_usage['total_tokens'] += usage.total_tokens
model_info = QWEN_MODELS.get(model_name, {})
input_cost = model_info.get('input_cost', 0.0)
output_cost = model_info.get('output_cost', 0.0)
self.token_usage['estimated_cost'] += (usage.prompt_tokens * input_cost) + (usage.completion_tokens * output_cost)
def _calculate_safe_max_tokens(self, model_name: str, user_requested_tokens: int) -> int:
model_info = QWEN_MODELS.get(model_name, {"max_context_tokens": 32768})
context_limit = model_info['max_context_tokens']
PROMPT_SAFETY_MARGIN = 8192
max_allowable_output = context_limit - PROMPT_SAFETY_MARGIN
return max(100, min(user_requested_tokens, max_allowable_output))
####
def _analyze_single_experiment(self, experiment_df: pd.DataFrame, experiment_id: str, qwen_model: str, lang_prefix: str, max_output_tokens: int) -> Optional[Dict]:
"""
Analiza los resultados de un único experimento (un 'chunk' de datos) y devuelve un JSON estructurado.
Esta función es el núcleo de la estrategia 'map' en el enfoque 'map-reduce'.
"""
# El prompt es la parte más importante. Está diseñado para ser muy específico y dar un ejemplo claro.
prompt = f"""
{lang_prefix}
You are an expert biotechnological data analyst. Your task is to analyze the provided model fitting results for a single experiment identified as: '{experiment_id}'.
The data contains different mathematical models that were fitted to experimental data for variables like Biomass, Substrate, or Product.
DATA FOR THIS SPECIFIC EXPERIMENT ('{experiment_id}'):
```
{experiment_df.to_string()}
```
YOUR INSTRUCTIONS:
1. **Identify Best Models**: For EACH variable type present in the data (e.g., 'Biomass', 'Substrate'), determine the single best-performing model. The best model is the one with the highest R² value. If R² values are equal, use the lowest RMSE as a tie-breaker.
2. **Extract Key Information**: For each of these best models, you must extract:
- The model's name.
- The specific metrics (R², RMSE, AIC, etc.) as key-value pairs.
- All kinetic parameters and their fitted values (e.g., mu_max, Ks) as key-value pairs.
3. **Summarize All Tested Models**: Create a simple list of the names of ALL models that were tested in this experiment, regardless of their performance.
4. **Provide Biological Interpretation**: Write a brief, concise interpretation (2-3 sentences) of what the results for this specific experiment imply. For example, "The selection of the Monod model for biomass with a µ_max of 0.45 suggests rapid growth under these conditions, while the high R² indicates a strong fit."
**CRITICAL OUTPUT FORMAT**: You MUST respond ONLY with a single, valid JSON object. Do not add any explanatory text, markdown formatting, or anything else before or after the JSON structure.
Follow this EXACT JSON structure:
{{
"experiment_id": "{experiment_id}",
"best_models_by_variable": [
{{
"variable_type": "Biomass",
"model_name": "Name of the best model for Biomass",
"metrics": {{
"R2": 0.99,
"RMSE": 0.01,
"AIC": -50.2
}},
"parameters": {{
"mu_max": 0.5,
"Ks": 10.2
}}
}},
{{
"variable_type": "Substrate",
"model_name": "Name of the best model for Substrate",
"metrics": {{
"R2": 0.98,
"RMSE": 0.05
}},
"parameters": {{
"k_consumption": 1.5
}}
}}
],
"all_tested_models": ["Monod", "Logistic", "Gompertz", "First_Order"],
"interpretation": "A brief, data-driven interpretation of the kinetic behavior observed in this specific experiment."
}}
"""
try:
# Calcular un número seguro de tokens de salida para evitar exceder el límite de contexto del modelo.
safe_max_tokens = self._calculate_safe_max_tokens(qwen_model, max_output_tokens)
# Realizar la llamada a la API de OpenAI/Nebius
response = self.client.chat.completions.create(
model=qwen_model,
max_tokens=safe_max_tokens,
temperature=0.05, # Temperatura baja para una salida más predecible y estructurada
response_format={"type": "json_object"}, # Forza la salida a ser un JSON válido
messages=[
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
{"role": "user", "content": prompt}
]
)
# Actualizar el contador de tokens y el costo estimado.
self._update_token_usage(qwen_model, response.usage)
# Extraer el contenido de la respuesta.
content = response.choices[0].message.content
# Parsear la cadena de texto JSON a un diccionario de Python.
# Este paso es propenso a errores si el LLM no sigue las instrucciones perfectamente.
parsed_json = json.loads(content)
return parsed_json
except json.JSONDecodeError as e:
# Capturar errores si la respuesta del modelo no es un JSON válido.
print(f"CRITICAL ERROR: Failed to decode JSON for experiment '{experiment_id}'.")
print(f"JSONDecodeError: {e}")
print(f"LLM Raw Output that caused the error:\n---\n{content}\n---")
return None # Devolver None para indicar que el análisis de este chunk falló.
except Exception as e:
# Capturar otros errores de la API (ej. problemas de red, clave inválida, etc.).
print(f"API Error during single analysis for experiment '{experiment_id}': {e}")
return None # Devolver None para que el proceso principal pueda saltar este chunk.
####
def _synthesize_comparative_analysis(self, individual_analyses: List[Dict], qwen_model: str, detail_level: str, lang_prefix: str, additional_specs: str, max_output_tokens: int) -> str:
"""
Sintetiza los análisis individuales (JSONs) en un reporte comparativo final en formato Markdown.
Esta es la etapa 'reduce' del proceso.
"""
# 1. Preparar los datos de entrada para el modelo.
# Convertimos la lista de diccionarios de Python a una cadena de texto JSON bien formateada.
# Esto es lo que el LLM verá como su "base de conocimiento".
analyses_summary = json.dumps(individual_analyses, indent=2)
# 2. Construir el prompt de síntesis.
# Este prompt es más conceptual que el anterior. Le pide al modelo que actúe como un científico senior.
# Sección para las especificaciones adicionales del usuario.
user_specs_section = f"""
## User's Additional Specifications
Please pay special attention to the following user-provided requirements during your analysis:
- {additional_specs}
""" if additional_specs else ""
# Instrucción de nivel de detalle basada en la selección del usuario.
detail_instruction = (
"Your report must be highly detailed and exhaustive. Include multiple tables, in-depth parameter comparisons, and nuanced biological interpretations."
if detail_level == "detailed" else
"Your report should be a high-level summary. Focus on the main conclusions and key takeaways, using concise tables and bullet points."
)
prompt = f"""
{lang_prefix}
You are a Principal Scientist tasked with creating a final, consolidated report from a series of individual experimental analyses.
You have been provided with a JSON array, where each object represents the detailed analysis of one specific experiment.
{user_specs_section}
YOUR PRIMARY OBJECTIVE:
Synthesize all the provided information into a single, cohesive, and comparative analysis report. The report must be written in rich Markdown format.
{detail_instruction}
Your final report MUST contain the following sections:
### 1. Executive Summary & Experimental Inventory
- Start with a brief paragraph summarizing the scope of the experiments analyzed.
- Create a Markdown table that serves as an inventory of all experiments. The table should list each `experiment_id`, the `variable_type` (e.g., Biomass), and the `model_name` of the best-performing model for that variable.
### 2. In-Depth Comparative Analysis
- **Model Performance Matrix:** This is the most critical part. Create a Markdown table that compares the performance of all major models across all experiments. Use R² as the primary metric. Rows should be model names, and columns should be experiment IDs. This allows for a direct visual comparison of which models are robust across different conditions.
- **Parameter Trend Analysis:** Analyze how key kinetic parameters (e.g., `mu_max`, `Ks`, etc.) change across the different experimental conditions. Discuss any observable trends, correlations, or significant differences. For example: "We observed that `mu_max` consistently increased as temperature rose from Exp_A to Exp_C, suggesting a direct correlation in this range."
- **Model Selection Justification:** Discuss why certain models performed better under specific conditions, referencing the biological interpretations from the input data.
### 3. Overall Recommendations & Conclusions
- **Globally Recommended Models:** Based on the entire dataset, declare the best overall model for each primary variable type (Biomass, Substrate, etc.). Justify your choice based on consistent high performance and robustness across experiments.
- **Condition-Specific Guidelines:** Provide actionable recommendations. For example, "For experiments conducted under high pH conditions (similar to 'Exp_C'), the 'Gompertz' model is strongly recommended due to its superior fit."
- **Suggestions for Future Research:** Briefly suggest a few next steps or potential experiments to validate the findings or explore new hypotheses.
---
**INPUT DATA: JSON ARRAY OF INDIVIDUAL ANALYSES**
```json
{analyses_summary}
```
---
Now, generate the complete, final Markdown report based on these instructions.
"""
try:
# Aumentamos el número de tokens de salida solicitados para la etapa de síntesis,
# ya que el reporte final puede ser largo. Se multiplica por 2 como heurística.
safe_max_tokens = self._calculate_safe_max_tokens(qwen_model, max_output_tokens * 2)
# Realizar la llamada a la API
response = self.client.chat.completions.create(
model=qwen_model,
max_tokens=safe_max_tokens,
temperature=0.2, # Una temperatura ligeramente más alta que en el análisis individual para permitir más creatividad en la redacción.
messages=[
{"role": "user", "content": prompt}
]
)
# Actualizar el uso de tokens y el costo.
self._update_token_usage(qwen_model, response.usage)
# Devolver el contenido del reporte generado.
return response.choices[0].message.content
except Exception as e:
# Manejar cualquier error durante la llamada a la API de síntesis.
error_message = f"CRITICAL ERROR: Failed during the final report synthesis stage. Details: {e}"
print(error_message)
return error_message
# --- DENTRO DE LA CLASE AIAnalyzer ---
def analyze_data(self, data: pd.DataFrame, chunk_column: str, qwen_model: str, detail_level: str, language: str, additional_specs: str, max_output_tokens: int) -> Generator[Union[str, Dict], None, None]:
"""
Orquesta el análisis completo como un generador, produciendo actualizaciones de estado.
"""
self.reset_token_usage()
if chunk_column not in data.columns:
yield {"error": f"The selected chunking column '{chunk_column}' was not found in the data."}
return
unique_experiments = data[chunk_column].unique()
yield f"Identified {len(unique_experiments)} groups to analyze using column '{chunk_column}': {list(unique_experiments)}"
individual_results = []
lang_prefix = "Please respond in English. " if language == 'en' else "Por favor responde en español. "
for i, exp_id in enumerate(unique_experiments):
yield f"({i+1}/{len(unique_experiments)}) Analyzing group: '{str(exp_id)}'..."
experiment_df = data[data[chunk_column] == exp_id]
result = self._analyze_single_experiment(experiment_df, str(exp_id), qwen_model, lang_prefix, max_output_tokens)
if result:
individual_results.append(result)
yield f"✅ Analysis for '{str(exp_id)}' complete."
else:
yield f"⚠️ Failed to analyze '{str(exp_id)}'. Skipping."
if not individual_results:
yield {"error": "Could not analyze any of the data groups. Please check data format and API status."}
return
yield "All groups analyzed. Synthesizing final comparative report..."
final_analysis = self._synthesize_comparative_analysis(
individual_results, qwen_model, detail_level, lang_prefix, additional_specs, max_output_tokens
)
yield "✅ Final report generated."
yield "Generating implementation code..."
code_result = "# Code generation is a placeholder in this version."
yield "✅ Code generated."
# Al final, produce el diccionario de resultados completo.
yield {
"analisis_completo": final_analysis,
"codigo_implementacion": code_result,
}
# --- FUNCIÓN DE PROCESAMIENTO PRINCIPAL ---
# --- FUNCIÓN DE PROCESAMIENTO PRINCIPAL (fuera de cualquier clase) ---
def process_files_and_analyze(files, chunk_column: str, qwen_model: str, detail_level: str, language: str, additional_specs: str, max_output_tokens: int):
"""
Procesa archivos subidos y orquesta el análisis, actualizando la UI con 'yield'.
"""
if not files:
yield "Please upload a file first.", "", "", ""
return
if not chunk_column:
yield "Please upload a file and select a column for grouping before analyzing.", "", "", ""
return
# Inicializa las variables que se irán actualizando.
thinking_log = ["### 🚀 Starting Analysis\n"]
analysis_result, code_result, token_report = "", "", ""
# Función auxiliar para actualizar el log y hacer yield a la UI
def update_log_and_yield(message):
nonlocal thinking_log
thinking_log.append(f"- {datetime.now().strftime('%H:%M:%S')}: {message}\n")
return "\n".join(thinking_log), gr.update(), gr.update(), gr.update()
yield update_log_and_yield("Processing uploaded file...")
file = files[0]
try:
df = pd.read_csv(file.name) if file.name.endswith('.csv') else pd.read_excel(file.name)
yield update_log_and_yield(f"Successfully loaded data from '{Path(file.name).name}'.")
except Exception as e:
yield update_log_and_yield(f"Error reading file: {e}")
return
# Inicia el analizador
analyzer = AIAnalyzer(client)
# Itera sobre el generador `analyze_data`
# Cada 'item' será una actualización de estado (string) o el resultado final (dict)
for item in analyzer.analyze_data(df, chunk_column, qwen_model, detail_level, language, additional_specs, max_output_tokens):
if isinstance(item, str):
# Es una actualización de estado, actualizamos el log de "thinking"
yield update_log_and_yield(item)
elif isinstance(item, dict) and "error" in item:
# Es un diccionario de error, terminamos el proceso.
yield update_log_and_yield(f"ANALYSIS FAILED: {item['error']}")
return
elif isinstance(item, dict):
# Es el diccionario de resultados final.
analysis_result = item["analisis_completo"]
code_result = item["codigo_implementacion"]
# Almacenar en el estado global para la exportación
app_state.current_analysis = analysis_result
app_state.current_code = code_result
# Formatear el reporte de tokens final
t = TRANSLATIONS[language]
token_info = analyzer.token_usage
token_report = f"""
### {t['token_info']}
- **{t['input_token_count']}:** {token_info['input_tokens']}
- **{t['output_token_count']}:** {token_info['output_tokens']}
- **{t['total_token_count']}:** {token_info['total_tokens']}
- **{t['token_cost']}:** ${token_info['estimated_cost']:.6f}
"""
# Hacemos un último yield con todos los resultados finales.
yield "\n".join(thinking_log), analysis_result, code_result, token_report
# --- ESTADO Y FUNCIONES DE UTILIDAD PARA LA UI ---
class AppState:
def __init__(self):
self.current_analysis = ""
self.current_code = ""
self.current_language = "en"
app_state = AppState()
app = None
def export_report(export_format: str, language: str) -> Tuple[str, Optional[str]]:
"""
Exporta el reporte al formato seleccionado (DOCX o PDF) usando el estado global.
Crea el archivo en un directorio temporal para evitar saturar el directorio de trabajo.
"""
# 1. Verificar si hay contenido para exportar en el estado global.
if not app_state.current_analysis:
error_msg = TRANSLATIONS[language].get('error_no_files', 'No analysis available to export.')
# Devuelve el mensaje de error y None para la ruta del archivo.
return error_msg, None
# 2. Generar un nombre de archivo único con marca de tiempo.
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# 3. Crear un directorio temporal para almacenar el reporte.
# Esto es una buena práctica para no llenar el directorio raíz de la aplicación.
try:
temp_dir = tempfile.mkdtemp()
except Exception as e:
return f"Error creating temporary directory: {e}", None
# 4. Construir la ruta completa del archivo y llamar al exportador correspondiente.
try:
if export_format == "DOCX":
# Construye la ruta para el archivo .docx
filename = os.path.join(temp_dir, f"biotech_analysis_report_{timestamp}.docx")
# Llama al método estático de la clase ReportExporter para crear el DOCX.
# Se asume que ReportExporter está definido en otra parte del código.
ReportExporter.export_to_docx(
content=app_state.current_analysis,
filename=filename,
language=language
)
elif export_format == "PDF":
# Construye la ruta para el archivo .pdf
filename = os.path.join(temp_dir, f"biotech_analysis_report_{timestamp}.pdf")
# Llama al método estático de la clase ReportExporter para crear el PDF.
# Se asume que ReportExporter está definido en otra parte del código.
ReportExporter.export_to_pdf(
content=app_state.current_analysis,
filename=filename,
language=language
)
else:
# Manejar un caso improbable de formato no soportado.
return f"Unsupported export format: {export_format}", None
# 5. Si la creación del archivo fue exitosa, devolver un mensaje de éxito y la ruta al archivo.
success_msg_template = TRANSLATIONS[language].get('report_exported', 'Report exported successfully as')
success_msg = f"{success_msg_template} {os.path.basename(filename)}"
return success_msg, filename
except Exception as e:
# 6. Si ocurre cualquier error durante la exportación (ej. falta de permisos, error en la librería),
# capturarlo y devolver un mensaje de error claro.
error_message = f"Error during report export to {export_format}: {str(e)}"
print(f"EXPORT ERROR: {error_message}") # Loguear el error en la consola para depuración.
return error_message, None
# --- INTERFAZ GRADIU COMPLETA ---
def create_interface():
global app
def update_interface_language(language):
app_state.current_language = language
t = TRANSLATIONS[language]
return [
gr.update(value=f"# {t['title']}"), gr.update(value=t['subtitle']),
gr.update(label=t['upload_files']), gr.update(label=t['chunk_column_label'], info=t['chunk_column_info']),
gr.update(label=t['select_model']), gr.update(label=t['select_language']), gr.update(label=t['select_theme']),
gr.update(label=t['detail_level']), gr.update(choices=[(t['detailed'], "detailed"), (t['summarized'], "summarized")]),
gr.update(label=t['additional_specs'], placeholder=t['additional_specs_placeholder']),
gr.update(label=t['output_tokens_per_chunk']), gr.update(value=t['analyze_button']),
gr.update(label=t['export_format']), gr.update(value=t['export_button']),
gr.update(label=t['thinking_process']), gr.update(label=t['analysis_report']),
gr.update(label=t['code_output']), gr.update(label=t['token_usage']), gr.update(label=t['data_format'])
]
with gr.Blocks(theme=THEMES['light'], title="Scalable Biotech Analyzer") as demo:
with gr.Row():
with gr.Column(scale=3):
title_text = gr.Markdown(f"# {TRANSLATIONS['en']['title']}")
subtitle_text = gr.Markdown(TRANSLATIONS['en']['subtitle'])
with gr.Column(scale=1):
language_selector = gr.Dropdown(choices=[("English", "en"), ("Español", "es")], value="en", label="Language/Idioma")
theme_selector = gr.Dropdown(choices=["light", "dark"], value="light", label="Theme/Tema")
with gr.Row():
with gr.Column(scale=1):
files_input = gr.File(label=TRANSLATIONS['en']['upload_files'], file_count="multiple", type="filepath")
# NUEVO COMPONENTE: Selector de columna de agrupación
chunk_column_selector = gr.Dropdown(
label=TRANSLATIONS['en']['chunk_column_label'],
info=TRANSLATIONS['en']['chunk_column_info'],
interactive=False # Se activa al subir archivo
)
model_selector = gr.Textbox(label=TRANSLATIONS['en']['select_model'], value="deepseek-ai/DeepSeek-V3-0324")
detail_level_radio = gr.Radio(choices=[("Detailed", "detailed"), ("Summarized", "summarized")], value="detailed", label=TRANSLATIONS['en']['detail_level'])
additional_specs = gr.Textbox(label=TRANSLATIONS['en']['additional_specs'], placeholder=TRANSLATIONS['en']['additional_specs_placeholder'], lines=3)
output_tokens_slider = gr.Slider(minimum=1000, maximum=32000, value=4000, step=500, label=TRANSLATIONS['en']['output_tokens_per_chunk'])
analyze_btn = gr.Button(TRANSLATIONS['en']['analyze_button'], variant="primary", interactive=False) # Desactivado por defecto
gr.Markdown("---")
export_format_radio = gr.Radio(choices=["DOCX", "PDF"], value="PDF", label=TRANSLATIONS['en']['export_format'])
export_btn = gr.Button(TRANSLATIONS['en']['export_button'])
export_status = gr.Textbox(label="Export Status", visible=False)
export_file = gr.File(label="Download Report", visible=False)
with gr.Column(scale=2):
thinking_output = gr.Markdown(label=TRANSLATIONS['en']['thinking_process'])
analysis_output = gr.Markdown(label=TRANSLATIONS['en']['analysis_report'])
code_output = gr.Code(label=TRANSLATIONS['en']['code_output'], language="python")
token_usage_output = gr.Markdown(label=TRANSLATIONS['en']['token_usage'])
data_format_accordion = gr.Accordion(label=TRANSLATIONS['en']['data_format'], open=False)
with data_format_accordion:
gr.Markdown("""...""") # Contenido del acordeón sin cambios
# --- LÓGICA DE EVENTOS DE LA UI ---
# NUEVO EVENTO: Se activa al subir un archivo para poblar el selector de columna
def update_chunk_column_selector(files):
if not files:
return gr.update(choices=[], value=None, interactive=False), gr.update(interactive=False)
try:
file_path = files[0].name
df = pd.read_csv(file_path, nrows=0) if file_path.endswith('.csv') else pd.read_excel(file_path, nrows=0)
columns = df.columns.tolist()
# Intenta encontrar una columna por defecto
default_candidates = ['Experiment', 'Experimento', 'Condition', 'Run', 'Batch', 'ID']
default_selection = next((col for col in default_candidates if col in columns), None)
return gr.update(choices=columns, value=default_selection, interactive=True), gr.update(interactive=True)
except Exception as e:
gr.Warning(f"Could not read columns from file: {e}")
return gr.update(choices=[], value=None, interactive=False), gr.update(interactive=False)
files_input.upload(
fn=update_chunk_column_selector,
inputs=[files_input],
outputs=[chunk_column_selector, analyze_btn]
)
analyze_btn.click(
fn=process_files_and_analyze,
inputs=[files_input, chunk_column_selector, model_selector, detail_level_radio, language_selector, additional_specs, output_tokens_slider],
outputs=[thinking_output, analysis_output, code_output, token_usage_output]
)
# Eventos de idioma y exportación (sin cambios)
language_selector.change(
fn=update_interface_language,
inputs=[language_selector],
outputs=[title_text, subtitle_text, files_input, chunk_column_selector, model_selector, language_selector, theme_selector, detail_level_radio, detail_level_radio, additional_specs, output_tokens_slider, analyze_btn, export_format_radio, export_btn, thinking_output, analysis_output, code_output, token_usage_output, data_format_accordion]
)
export_btn.click(fn=export_report, inputs=[export_format_radio, language_selector], outputs=[export_status, export_file])
app = demo
return demo
# --- FUNCIÓN PRINCIPAL DE EJECUCIÓN ---
def main():
if not os.getenv("NEBIUS_API_KEY"):
return gr.Interface(lambda: TRANSLATIONS['en']['error_no_api'], [], gr.Textbox(label="Configuration Error"))
return create_interface()
if __name__ == "__main__":
demo = main()
if demo:
print("===== Application Startup =====")
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False, inbrowser=True)