Spaces:
Runtime error
Runtime error
Upload utils.py
#3
by
roseDwayane
- opened
utils.py
CHANGED
@@ -15,20 +15,21 @@ from scipy.signal import decimate, resample_poly, firwin, lfilter
|
|
15 |
|
16 |
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
|
|
18 |
|
19 |
-
def resample(signal, fs):
|
20 |
-
# downsample the signal to
|
21 |
-
if fs>
|
22 |
-
fs_down =
|
23 |
q = int(fs / fs_down) # Downsampling factor
|
24 |
signal_new = []
|
25 |
for ch in signal:
|
26 |
x_down = decimate(ch, q)
|
27 |
signal_new.append(x_down)
|
28 |
|
29 |
-
# upsample the signal to
|
30 |
-
elif fs<
|
31 |
-
fs_up =
|
32 |
p = int(fs_up / fs) # Upsampling factor
|
33 |
signal_new = []
|
34 |
for ch in signal:
|
@@ -70,14 +71,14 @@ def cut_data(filepath, raw_data):
|
|
70 |
total = int(len(raw_data[0]) / 1024)
|
71 |
for i in range(total):
|
72 |
table = raw_data[:, i * 1024:(i + 1) * 1024]
|
73 |
-
filename = filepath + '
|
74 |
with open(filename, 'w', newline='') as csvfile:
|
75 |
writer = csv.writer(csvfile)
|
76 |
writer.writerows(table)
|
77 |
return total
|
78 |
|
79 |
|
80 |
-
def glue_data(file_name, total
|
81 |
gluedata = 0
|
82 |
for i in range(total):
|
83 |
file_name1 = file_name + 'output{}.csv'.format(str(i))
|
@@ -96,11 +97,7 @@ def glue_data(file_name, total, output):
|
|
96 |
raw_data[:, 1] = smooth
|
97 |
gluedata = np.append(gluedata, raw_data, axis=1)
|
98 |
#print(gluedata.shape)
|
99 |
-
|
100 |
-
with open(filename2, 'w', newline='') as csvfile:
|
101 |
-
writer = csv.writer(csvfile)
|
102 |
-
writer.writerows(gluedata)
|
103 |
-
#print("GLUE DONE!" + filename2)
|
104 |
|
105 |
|
106 |
def save_data(data, filename):
|
@@ -112,91 +109,105 @@ def dataDelete(path):
|
|
112 |
try:
|
113 |
shutil.rmtree(path)
|
114 |
except OSError as e:
|
115 |
-
|
|
|
116 |
else:
|
117 |
pass
|
118 |
#print("The directory is deleted successfully")
|
119 |
|
120 |
|
121 |
def decode_data(data, std_num, mode=5):
|
122 |
-
|
123 |
if mode == "ICUNet":
|
124 |
# 1. read name
|
125 |
-
model = cumbersome_model2.UNet1(n_channels=30, n_classes=30)
|
126 |
resumeLoc = './model/ICUNet/modelsave' + '/checkpoint.pth.tar'
|
127 |
# 2. load model
|
128 |
-
checkpoint = torch.load(resumeLoc, map_location=
|
129 |
model.load_state_dict(checkpoint['state_dict'], False)
|
130 |
model.eval()
|
131 |
# 3. decode strategy
|
132 |
with torch.no_grad():
|
133 |
data = data[np.newaxis, :, :]
|
134 |
-
data = torch.Tensor(data)
|
135 |
decode = model(data)
|
136 |
|
137 |
|
138 |
-
elif mode == "
|
139 |
# 1. read name
|
140 |
-
if mode == "
|
141 |
-
model = UNet_family.NestedUNet3(num_classes=30)
|
142 |
-
elif mode == "
|
143 |
-
model = UNet_attention.UNetpp3_Transformer(num_classes=30)
|
144 |
-
resumeLoc = './model/'+ mode + '/modelsave' + '/checkpoint.pth.tar'
|
145 |
# 2. load model
|
146 |
-
checkpoint = torch.load(resumeLoc, map_location=
|
147 |
model.load_state_dict(checkpoint['state_dict'], False)
|
148 |
model.eval()
|
149 |
# 3. decode strategy
|
150 |
with torch.no_grad():
|
151 |
data = data[np.newaxis, :, :]
|
152 |
-
data = torch.Tensor(data)
|
153 |
decode1, decode2, decode = model(data)
|
154 |
|
155 |
|
156 |
-
elif mode == "
|
157 |
# 1. read name
|
158 |
resumeLoc = './model/' + mode + '/modelsave/checkpoint.pth.tar'
|
159 |
# 2. load model
|
160 |
-
checkpoint = torch.load(resumeLoc, map_location=
|
161 |
-
model = tf_model.make_model(30, 30, N=2)
|
162 |
model.load_state_dict(checkpoint['state_dict'])
|
163 |
model.eval()
|
164 |
# 3. decode strategy
|
165 |
with torch.no_grad():
|
166 |
-
data = torch.FloatTensor(data)
|
167 |
data = data.unsqueeze(0)
|
168 |
src = data
|
169 |
-
tgt = data
|
170 |
batch = tf_data.Batch(src, tgt, 0)
|
171 |
out = model.forward(batch.src, batch.src[:,:,1:], batch.src_mask, batch.trg_mask)
|
172 |
decode = model.generator(out)
|
173 |
decode = decode.permute(0, 2, 1)
|
174 |
-
|
175 |
-
|
176 |
|
177 |
# 4. numpy
|
178 |
#print(decode.shape)
|
179 |
-
|
180 |
-
decode = np.array(decode).astype(np.float64)
|
181 |
-
print(type(decode))
|
182 |
-
print(decode.shape)
|
183 |
-
#decode = decode.tolist()
|
184 |
return decode
|
185 |
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
# establish temp folder
|
188 |
try:
|
189 |
-
os.mkdir(filepath+"
|
190 |
except OSError as e:
|
191 |
-
dataDelete(filepath+"
|
192 |
-
os.mkdir(filepath+"
|
193 |
print(e)
|
194 |
|
195 |
# read data
|
196 |
-
signal = read_train_data(
|
|
|
|
|
|
|
197 |
#print(signal.shape)
|
198 |
# resample
|
199 |
-
signal = resample(signal, samplerate)
|
200 |
#print(signal.shape)
|
201 |
# FIR_filter
|
202 |
signal = FIR_filter(signal, 1, 50)
|
@@ -206,13 +217,29 @@ def preprocessing(filepath, filename, samplerate):
|
|
206 |
|
207 |
return total_file_num
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
# model = tf.keras.models.load_model('./denoise_model/')
|
211 |
-
def reconstruct(model_name, total, filepath,
|
212 |
# -------------------decode_data---------------------------
|
213 |
second1 = time.time()
|
214 |
for i in range(total):
|
215 |
-
file_name = filepath + '
|
216 |
data_noise = read_train_data(file_name)
|
217 |
|
218 |
std = np.std(data_noise)
|
@@ -222,18 +249,17 @@ def reconstruct(model_name, total, filepath, outputfile):
|
|
222 |
|
223 |
# Deep Learning Artifact Removal
|
224 |
d_data = decode_data(data_noise, std, model_name)
|
225 |
-
|
226 |
|
227 |
-
outputname = filepath + '
|
228 |
save_data(d_data, outputname)
|
229 |
-
#d_data.to_csv(outputname, index=False)
|
230 |
-
|
231 |
|
232 |
# --------------------glue_data----------------------------
|
233 |
-
glue_data(filepath+"
|
234 |
# -------------------delete_data---------------------------
|
235 |
-
dataDelete(filepath+"
|
236 |
second2 = time.time()
|
237 |
-
|
238 |
-
print("Using
|
239 |
-
|
|
|
|
15 |
|
16 |
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
18 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
19 |
|
20 |
+
def resample(signal, fs, tgt_fs):
|
21 |
+
# downsample the signal to the target sample rate
|
22 |
+
if fs>tgt_fs:
|
23 |
+
fs_down = tgt_fs # Desired sample rate
|
24 |
q = int(fs / fs_down) # Downsampling factor
|
25 |
signal_new = []
|
26 |
for ch in signal:
|
27 |
x_down = decimate(ch, q)
|
28 |
signal_new.append(x_down)
|
29 |
|
30 |
+
# upsample the signal to the target sample rate
|
31 |
+
elif fs<tgt_fs:
|
32 |
+
fs_up = tgt_fs # Desired sample rate
|
33 |
p = int(fs_up / fs) # Upsampling factor
|
34 |
signal_new = []
|
35 |
for ch in signal:
|
|
|
71 |
total = int(len(raw_data[0]) / 1024)
|
72 |
for i in range(total):
|
73 |
table = raw_data[:, i * 1024:(i + 1) * 1024]
|
74 |
+
filename = filepath + 'temp2/' + str(i) + '.csv'
|
75 |
with open(filename, 'w', newline='') as csvfile:
|
76 |
writer = csv.writer(csvfile)
|
77 |
writer.writerows(table)
|
78 |
return total
|
79 |
|
80 |
|
81 |
+
def glue_data(file_name, total):
|
82 |
gluedata = 0
|
83 |
for i in range(total):
|
84 |
file_name1 = file_name + 'output{}.csv'.format(str(i))
|
|
|
97 |
raw_data[:, 1] = smooth
|
98 |
gluedata = np.append(gluedata, raw_data, axis=1)
|
99 |
#print(gluedata.shape)
|
100 |
+
return gluedata
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
def save_data(data, filename):
|
|
|
109 |
try:
|
110 |
shutil.rmtree(path)
|
111 |
except OSError as e:
|
112 |
+
pass
|
113 |
+
#print(e)
|
114 |
else:
|
115 |
pass
|
116 |
#print("The directory is deleted successfully")
|
117 |
|
118 |
|
119 |
def decode_data(data, std_num, mode=5):
|
120 |
+
|
121 |
if mode == "ICUNet":
|
122 |
# 1. read name
|
123 |
+
model = cumbersome_model2.UNet1(n_channels=30, n_classes=30).to(device)
|
124 |
resumeLoc = './model/ICUNet/modelsave' + '/checkpoint.pth.tar'
|
125 |
# 2. load model
|
126 |
+
checkpoint = torch.load(resumeLoc, map_location=device)
|
127 |
model.load_state_dict(checkpoint['state_dict'], False)
|
128 |
model.eval()
|
129 |
# 3. decode strategy
|
130 |
with torch.no_grad():
|
131 |
data = data[np.newaxis, :, :]
|
132 |
+
data = torch.Tensor(data).to(device)
|
133 |
decode = model(data)
|
134 |
|
135 |
|
136 |
+
elif mode == "ICUNet++" or mode == "ICUNet_attn":
|
137 |
# 1. read name
|
138 |
+
if mode == "ICUNet++":
|
139 |
+
model = UNet_family.NestedUNet3(num_classes=30).to(device)
|
140 |
+
elif mode == "ICUNet_attn":
|
141 |
+
model = UNet_attention.UNetpp3_Transformer(num_classes=30).to(device)
|
142 |
+
resumeLoc = './model/' + mode + '/modelsave' + '/checkpoint.pth.tar'
|
143 |
# 2. load model
|
144 |
+
checkpoint = torch.load(resumeLoc, map_location=device)
|
145 |
model.load_state_dict(checkpoint['state_dict'], False)
|
146 |
model.eval()
|
147 |
# 3. decode strategy
|
148 |
with torch.no_grad():
|
149 |
data = data[np.newaxis, :, :]
|
150 |
+
data = torch.Tensor(data).to(device)
|
151 |
decode1, decode2, decode = model(data)
|
152 |
|
153 |
|
154 |
+
elif mode == "ART":
|
155 |
# 1. read name
|
156 |
resumeLoc = './model/' + mode + '/modelsave/checkpoint.pth.tar'
|
157 |
# 2. load model
|
158 |
+
checkpoint = torch.load(resumeLoc, map_location=device)
|
159 |
+
model = tf_model.make_model(30, 30, N=2).to(device)
|
160 |
model.load_state_dict(checkpoint['state_dict'])
|
161 |
model.eval()
|
162 |
# 3. decode strategy
|
163 |
with torch.no_grad():
|
164 |
+
data = torch.FloatTensor(data).to(device)
|
165 |
data = data.unsqueeze(0)
|
166 |
src = data
|
167 |
+
tgt = data # you can modify to randomize data
|
168 |
batch = tf_data.Batch(src, tgt, 0)
|
169 |
out = model.forward(batch.src, batch.src[:,:,1:], batch.src_mask, batch.trg_mask)
|
170 |
decode = model.generator(out)
|
171 |
decode = decode.permute(0, 2, 1)
|
172 |
+
add_tensor = torch.zeros(1, 30, 1).to(device)
|
173 |
+
decode = torch.cat((decode, add_tensor), dim=2)
|
174 |
|
175 |
# 4. numpy
|
176 |
#print(decode.shape)
|
177 |
+
decode = np.array(decode.cpu()).astype(np.float64)
|
|
|
|
|
|
|
|
|
178 |
return decode
|
179 |
|
180 |
+
|
181 |
+
def reorder_data(raw_data, mapping_result):
|
182 |
+
new_data = np.zeros((30, raw_data.shape[1]))
|
183 |
+
zero_arr = np.zeros((1, raw_data.shape[1]))
|
184 |
+
for i, (indices, flag) in enumerate(zip(mapping_result["index"], mapping_result["isOriginalData"])):
|
185 |
+
if flag == True:
|
186 |
+
new_data[i, :] = raw_data[indices[0], :]
|
187 |
+
elif indices[0] == None:
|
188 |
+
new_data[i, :] = zero_arr
|
189 |
+
else:
|
190 |
+
data = [raw_data[idx, :] for idx in indices]
|
191 |
+
new_data[i, :] = np.mean(data, axis=0)
|
192 |
+
return new_data
|
193 |
+
|
194 |
+
def preprocessing(filepath, inputfile, samplerate, mapping_result):
|
195 |
# establish temp folder
|
196 |
try:
|
197 |
+
os.mkdir(filepath+"temp2/")
|
198 |
except OSError as e:
|
199 |
+
dataDelete(filepath+"temp2/")
|
200 |
+
os.mkdir(filepath+"temp2/")
|
201 |
print(e)
|
202 |
|
203 |
# read data
|
204 |
+
signal = read_train_data(inputfile)
|
205 |
+
#print(signal.shape)
|
206 |
+
# channel mapping
|
207 |
+
signal = reorder_data(signal, mapping_result)
|
208 |
#print(signal.shape)
|
209 |
# resample
|
210 |
+
signal = resample(signal, samplerate, 256)
|
211 |
#print(signal.shape)
|
212 |
# FIR_filter
|
213 |
signal = FIR_filter(signal, 1, 50)
|
|
|
217 |
|
218 |
return total_file_num
|
219 |
|
220 |
+
def restore_order(data, all_data, mapping_result):
|
221 |
+
for i, (indices, flag) in enumerate(zip(mapping_result["index"], mapping_result["isOriginalData"])):
|
222 |
+
if flag == True:
|
223 |
+
all_data[indices[0], :] = data[i, :]
|
224 |
+
return all_data
|
225 |
+
|
226 |
+
def postprocessing(data, samplerate, outputfile, mapping_result, batch_cnt, channel_num):
|
227 |
+
|
228 |
+
# resample to original sampling rate
|
229 |
+
data = resample(data, 256, samplerate)
|
230 |
+
# reverse channel mapping
|
231 |
+
all_data = np.zeros((channel_num, data.shape[1])) if batch_cnt==0 else read_train_data(outputfile)
|
232 |
+
all_data = restore_order(data, all_data, mapping_result)
|
233 |
+
# save data
|
234 |
+
save_data(all_data, outputfile)
|
235 |
+
|
236 |
|
237 |
# model = tf.keras.models.load_model('./denoise_model/')
|
238 |
+
def reconstruct(model_name, total, filepath, batch_cnt):
|
239 |
# -------------------decode_data---------------------------
|
240 |
second1 = time.time()
|
241 |
for i in range(total):
|
242 |
+
file_name = filepath + 'temp2/{}.csv'.format(str(i))
|
243 |
data_noise = read_train_data(file_name)
|
244 |
|
245 |
std = np.std(data_noise)
|
|
|
249 |
|
250 |
# Deep Learning Artifact Removal
|
251 |
d_data = decode_data(data_noise, std, model_name)
|
252 |
+
d_data = d_data[0]
|
253 |
|
254 |
+
outputname = filepath + 'temp2/output{}.csv'.format(str(i))
|
255 |
save_data(d_data, outputname)
|
|
|
|
|
256 |
|
257 |
# --------------------glue_data----------------------------
|
258 |
+
data = glue_data(filepath+"temp2/", total)
|
259 |
# -------------------delete_data---------------------------
|
260 |
+
dataDelete(filepath+"temp2/")
|
261 |
second2 = time.time()
|
262 |
+
|
263 |
+
print(f"Using {model_name} model to reconstruct batch-{batch_cnt+1} has been success in {second2 - second1} sec(s)")
|
264 |
+
return data
|
265 |
+
|