Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
from
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Configuração de dispositivo
|
8 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
9 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
10 |
|
11 |
-
#
|
12 |
-
model_a = AutoModelForCausalLM.from_pretrained(
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
pipe_a = pipeline(
|
16 |
"text-generation",
|
@@ -21,9 +21,12 @@ pipe_a = pipeline(
|
|
21 |
pad_token_id=tokenizer_a.eos_token_id
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
model_b = AutoModelForCausalLM.from_pretrained(
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
pipe_b = pipeline(
|
29 |
"text-generation",
|
@@ -34,124 +37,24 @@ pipe_b = pipeline(
|
|
34 |
pad_token_id=tokenizer_b.eos_token_id
|
35 |
)
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
"
|
40 |
-
model="nlptown/bert-base-multilingual-uncased-sentiment",
|
41 |
-
device=DEVICE
|
42 |
-
)
|
43 |
-
|
44 |
-
# Modelo de similaridade semântica
|
45 |
-
similarity_model = SentenceTransformer(
|
46 |
-
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
47 |
-
device="cuda" if torch.cuda.is_available() else "cpu"
|
48 |
-
)
|
49 |
-
|
50 |
-
def semantic_similarity(text1, text2):
|
51 |
-
if not text1.strip() or not text2.strip():
|
52 |
-
return 0.0
|
53 |
-
embeddings = similarity_model.encode([text1, text2], convert_to_tensor=True)
|
54 |
-
cosine_scores = util.pytorch_cos_sim(embeddings[0], embeddings[1])
|
55 |
-
return cosine_scores.item()
|
56 |
-
|
57 |
-
def format_mistral_prompt(user_input):
|
58 |
-
return f"<s>[INST] {user_input.strip()} [/INST]"
|
59 |
-
|
60 |
-
def judge_response(question, response_a, response_b):
|
61 |
-
sentiment_a = sentiment_arbiter(response_a)[0]
|
62 |
-
sentiment_b = sentiment_arbiter(response_b)[0]
|
63 |
-
|
64 |
-
score_sent_a = int(sentiment_a['label'][0])
|
65 |
-
score_sent_b = int(sentiment_b['label'][0])
|
66 |
-
|
67 |
-
sim_score_a = semantic_similarity(question, response_a)
|
68 |
-
sim_score_b = semantic_similarity(question, response_b)
|
69 |
-
|
70 |
-
conciseness_a = min(1.0, 50 / max(1, len(response_a.split())))
|
71 |
-
conciseness_b = min(1.0, 50 / max(1, len(response_b.split())))
|
72 |
-
|
73 |
-
WEIGHT_SENTIMENT = 0.4
|
74 |
-
WEIGHT_RELEVANCE = 0.5
|
75 |
-
WEIGHT_CONCISENESS = 0.1
|
76 |
-
|
77 |
-
total_a = (WEIGHT_SENTIMENT * score_sent_a +
|
78 |
-
WEIGHT_RELEVANCE * sim_score_a +
|
79 |
-
WEIGHT_CONCISENESS * conciseness_a)
|
80 |
-
|
81 |
-
total_b = (WEIGHT_SENTIMENT * score_sent_b +
|
82 |
-
WEIGHT_RELEVANCE * sim_score_b +
|
83 |
-
WEIGHT_CONCISENESS * conciseness_b)
|
84 |
-
|
85 |
-
THRESHOLD = 0.15
|
86 |
-
if abs(total_a - total_b) < THRESHOLD:
|
87 |
-
winner = "Modelo A" if score_sent_a >= score_sent_b else "Modelo B"
|
88 |
-
final_response = response_a if score_sent_a >= score_sent_b else response_b
|
89 |
-
else:
|
90 |
-
winner = "Modelo A" if total_a > total_b else "Modelo B"
|
91 |
-
final_response = response_a if total_a > total_b else response_b
|
92 |
-
|
93 |
-
print(f"\nA: S:{score_sent_a:.2f} R:{sim_score_a:.2f} C:{conciseness_a:.2f} T:{total_a:.2f}")
|
94 |
-
print(f"B: S:{score_sent_b:.2f} R:{sim_score_b:.2f} C:{conciseness_b:.2f} T:{total_b:.2f}")
|
95 |
-
print(f"Vencedor: {winner} Diferença: {abs(total_a - total_b):.2f}")
|
96 |
-
|
97 |
-
return winner, final_response
|
98 |
-
|
99 |
-
def chatbot(prompt):
|
100 |
-
prompt_pt = "Responda em português: " + prompt
|
101 |
-
mistral_prompt = format_mistral_prompt(prompt_pt)
|
102 |
-
|
103 |
-
response_a = pipe_a(
|
104 |
-
prompt_pt,
|
105 |
-
max_new_tokens=60,
|
106 |
-
temperature=0.7,
|
107 |
-
top_k=50,
|
108 |
-
top_p=0.9,
|
109 |
-
repetition_penalty=1.2,
|
110 |
-
)[0]['generated_text'].strip()
|
111 |
-
|
112 |
-
response_b = pipe_b(
|
113 |
-
mistral_prompt,
|
114 |
-
max_new_tokens=60,
|
115 |
-
temperature=0.7,
|
116 |
-
top_k=50,
|
117 |
-
top_p=0.9,
|
118 |
-
repetition_penalty=1.2,
|
119 |
-
)[0]['generated_text'].strip()
|
120 |
-
|
121 |
-
winner, final_response = judge_response(prompt, response_a, response_b)
|
122 |
-
return prompt, response_a, response_b, winner, final_response
|
123 |
-
|
124 |
-
css = """
|
125 |
-
footer {visibility: hidden}
|
126 |
-
.output-text {font-size: 16px !important}
|
127 |
-
"""
|
128 |
-
|
129 |
-
with gr.Blocks(css=css) as demo:
|
130 |
-
gr.Markdown("# 🤖 Chatbot com Julgamento Aprimorado")
|
131 |
-
gr.Markdown("Compara respostas de dois modelos usando múltiplos critérios de qualidade")
|
132 |
-
|
133 |
-
with gr.Row():
|
134 |
-
inp = gr.Textbox(label="Digite sua pergunta:", lines=2, placeholder="Escreva sua pergunta em português...")
|
135 |
-
btn = gr.Button("Enviar")
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
gr.Markdown("### Modelo A (Falcon RW 1B)")
|
140 |
-
out_a = gr.Textbox(label="Resposta", interactive=False)
|
141 |
-
with gr.Column():
|
142 |
-
gr.Markdown("### Modelo B (Mistral 7B Instruct)")
|
143 |
-
out_b = gr.Textbox(label="Resposta", interactive=False)
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
outputs=[inp, out_a, out_b, winner_out, final_out]
|
155 |
-
)
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
3 |
|
4 |
# Configuração de dispositivo
|
5 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
6 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
7 |
|
8 |
+
# Carrega modelo A - LLaMA 2
|
9 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
10 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
11 |
+
torch_dtype=TORCH_DTYPE
|
12 |
+
)
|
13 |
+
tokenizer_a = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
14 |
|
15 |
pipe_a = pipeline(
|
16 |
"text-generation",
|
|
|
21 |
pad_token_id=tokenizer_a.eos_token_id
|
22 |
)
|
23 |
|
24 |
+
# Carrega modelo B - Falcon 7B Instruct (sem autenticação)
|
25 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
26 |
+
"tiiuae/falcon-7b-instruct",
|
27 |
+
torch_dtype=TORCH_DTYPE
|
28 |
+
)
|
29 |
+
tokenizer_b = AutoTokenizer.from_pretrained("tiiuae/falcon-7b-instruct")
|
30 |
|
31 |
pipe_b = pipeline(
|
32 |
"text-generation",
|
|
|
37 |
pad_token_id=tokenizer_b.eos_token_id
|
38 |
)
|
39 |
|
40 |
+
# Funções auxiliares para formatar o prompt
|
41 |
+
def format_llama_prompt(user_input):
|
42 |
+
return f"[INST] <<SYS>>\nVocê é um assistente útil.\n<</SYS>>\n\n{user_input.strip()} [/INST]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def format_falcon_prompt(user_input):
|
45 |
+
return f"Responda em português: {user_input.strip()}"
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Interface simples para testar os modelos
|
48 |
+
if __name__ == "__main__":
|
49 |
+
while True:
|
50 |
+
prompt = input("\nDigite uma pergunta (ou 'sair'): ").strip()
|
51 |
+
if prompt.lower() == "sair":
|
52 |
+
break
|
53 |
|
54 |
+
print("\n=== Resposta do LLaMA 2 ===")
|
55 |
+
llama_response = pipe_a(format_llama_prompt(prompt), max_new_tokens=200)[0]['generated_text']
|
56 |
+
print(llama_response)
|
|
|
|
|
57 |
|
58 |
+
print("\n=== Resposta do Falcon 7B ===")
|
59 |
+
falcon_response = pipe_b(format_falcon_prompt(prompt), max_new_tokens=200)[0]['generated_text']
|
60 |
+
print(falcon_response)
|