Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image | |
import torch | |
from transformers import AutoProcessor, SiglipVisionModel | |
from models.projection_models import MLPProjModel, QFormerProjModel | |
from models.attention_processor import FluxAttnProcessor | |
class Calligrapher: | |
def __init__(self, sd_pipe, image_encoder_path, calligrapher_path, device, num_tokens): | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.calligrapher_path = calligrapher_path | |
self.num_tokens = num_tokens | |
self.pipe = sd_pipe.to(self.device) | |
self.set_attn_adapter() | |
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16) | |
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path) | |
self.image_proj_mlp, self.image_proj_qformer = self.init_proj() | |
self.load_models() | |
def init_proj(self): | |
image_proj_mlp = MLPProjModel( | |
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, | |
id_embeddings_dim=1152, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.bfloat16) | |
image_proj_qformer = QFormerProjModel( | |
cross_attention_dim=4096, | |
id_embeddings_dim=1152, | |
num_tokens=self.num_tokens, | |
num_heads=8, | |
num_query_tokens=32 | |
).to(self.device, dtype=torch.bfloat16) | |
return image_proj_mlp, image_proj_qformer | |
def set_attn_adapter(self): | |
transformer = self.pipe.transformer | |
attn_procs = {} | |
for name in transformer.attn_processors.keys(): | |
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"): | |
attn_procs[name] = FluxAttnProcessor( | |
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim, | |
cross_attention_dim=transformer.config.joint_attention_dim, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=torch.bfloat16) | |
else: | |
attn_procs[name] = transformer.attn_processors[name] | |
transformer.set_attn_processor(attn_procs) | |
def load_models(self): | |
state_dict = torch.load(self.calligrapher_path, map_location="cpu") | |
self.image_proj_mlp.load_state_dict(state_dict["image_proj_mlp"], strict=True) | |
self.image_proj_qformer.load_state_dict(state_dict["image_proj_qformer"], strict=True) | |
target_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values()) | |
target_layers.load_state_dict(state_dict["attn_adapter"], strict=False) | |
def get_image_embeds(self, pil_image=None, clip_image_embeds=None): | |
if pil_image is not None: | |
if isinstance(pil_image, Image.Image): | |
pil_image = [pil_image] | |
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values | |
clip_image_embeds = self.image_encoder( | |
clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output | |
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16) | |
else: | |
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16) | |
image_prompt_embeds = self.image_proj_mlp(clip_image_embeds) \ | |
+ self.image_proj_qformer(clip_image_embeds) | |
return image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.transformer.attn_processors.values(): | |
if isinstance(attn_processor, FluxAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
image=None, | |
mask_image=None, | |
ref_image=None, | |
clip_image_embeds=None, | |
prompt=None, | |
scale=1.0, | |
seed=None, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
image_prompt_embeds = self.get_image_embeds( | |
pil_image=ref_image, clip_image_embeds=clip_image_embeds | |
) | |
if seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(self.device).manual_seed(seed) | |
images = self.pipe( | |
image=image, | |
mask_image=mask_image, | |
prompt=prompt, | |
image_emb=image_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |