Calligrapher / models /calligrapher.py
Calligrapher2025's picture
Init.
4583098 verified
from PIL import Image
import torch
from transformers import AutoProcessor, SiglipVisionModel
from models.projection_models import MLPProjModel, QFormerProjModel
from models.attention_processor import FluxAttnProcessor
class Calligrapher:
def __init__(self, sd_pipe, image_encoder_path, calligrapher_path, device, num_tokens):
self.device = device
self.image_encoder_path = image_encoder_path
self.calligrapher_path = calligrapher_path
self.num_tokens = num_tokens
self.pipe = sd_pipe.to(self.device)
self.set_attn_adapter()
self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
self.image_proj_mlp, self.image_proj_qformer = self.init_proj()
self.load_models()
def init_proj(self):
image_proj_mlp = MLPProjModel(
cross_attention_dim=self.pipe.transformer.config.joint_attention_dim,
id_embeddings_dim=1152,
num_tokens=self.num_tokens,
).to(self.device, dtype=torch.bfloat16)
image_proj_qformer = QFormerProjModel(
cross_attention_dim=4096,
id_embeddings_dim=1152,
num_tokens=self.num_tokens,
num_heads=8,
num_query_tokens=32
).to(self.device, dtype=torch.bfloat16)
return image_proj_mlp, image_proj_qformer
def set_attn_adapter(self):
transformer = self.pipe.transformer
attn_procs = {}
for name in transformer.attn_processors.keys():
if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
attn_procs[name] = FluxAttnProcessor(
hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
cross_attention_dim=transformer.config.joint_attention_dim,
num_tokens=self.num_tokens,
).to(self.device, dtype=torch.bfloat16)
else:
attn_procs[name] = transformer.attn_processors[name]
transformer.set_attn_processor(attn_procs)
def load_models(self):
state_dict = torch.load(self.calligrapher_path, map_location="cpu")
self.image_proj_mlp.load_state_dict(state_dict["image_proj_mlp"], strict=True)
self.image_proj_qformer.load_state_dict(state_dict["image_proj_qformer"], strict=True)
target_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
target_layers.load_state_dict(state_dict["attn_adapter"], strict=False)
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if pil_image is not None:
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
clip_image_embeds = self.image_encoder(
clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
else:
clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
image_prompt_embeds = self.image_proj_mlp(clip_image_embeds) \
+ self.image_proj_qformer(clip_image_embeds)
return image_prompt_embeds
def set_scale(self, scale):
for attn_processor in self.pipe.transformer.attn_processors.values():
if isinstance(attn_processor, FluxAttnProcessor):
attn_processor.scale = scale
def generate(
self,
image=None,
mask_image=None,
ref_image=None,
clip_image_embeds=None,
prompt=None,
scale=1.0,
seed=None,
num_inference_steps=30,
**kwargs,
):
self.set_scale(scale)
image_prompt_embeds = self.get_image_embeds(
pil_image=ref_image, clip_image_embeds=clip_image_embeds
)
if seed is None:
generator = None
else:
generator = torch.Generator(self.device).manual_seed(seed)
images = self.pipe(
image=image,
mask_image=mask_image,
prompt=prompt,
image_emb=image_prompt_embeds,
num_inference_steps=num_inference_steps,
generator=generator,
**kwargs,
).images
return images