YOLO11-earth / app.py
CatmanJr's picture
Update app.py
78efd15 verified
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
# Load YOLO model
model = YOLO('yolo11s-earth.pt') # Load your model
# Default classes
default_classes = [
'airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge',
'chimney', 'dam', 'Expressway-Service-area', 'Expressway-toll-station',
'golffield', 'groundtrackfield', 'harbor', 'overpass', 'ship',
'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle',
'windmill'
]
def process_frame(frame, classes_input):
# Process user input classes
if classes_input and classes_input.strip():
classes_list = [cls.strip() for cls in classes_input.split(',')]
# Validate classes_list
for cls in classes_list:
if not isinstance(cls, str):
print("Invalid class name:", cls)
continue
model.set_classes(classes_list) # Set model classes
else:
# Use default classes if no input or input is empty
model.set_classes(default_classes)
# Copy frame to a writable array
frame = frame.copy()
# Resize image to speed up processing (optional)
h, w = frame.shape[:2]
new_size = (640, int(h * (640 / w))) if w > h else (int(w * (640 / h)), 640)
resized_frame = cv2.resize(frame, new_size)
# Convert image format
rgb_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
# Use model for detection
results = model.predict(rgb_frame)
# Draw detection results
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = box.xyxy[0]
conf = box.conf[0]
cls = box.cls[0]
try:
class_name = model.names[int(cls)]
except (IndexError, TypeError) as e:
print(f"Error accessing model.names: {e}")
class_name = "Unknown" # Provide a default value
# Adjust coordinates to original image size
x1 = int(x1 * w / new_size[0])
y1 = int(y1 * h / new_size[1])
x2 = int(x2 * w / new_size[0])
y2 = int(y2 * h / new_size[1])
# Draw bounding box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, f'{class_name}:{conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
return frame
def main():
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# YOLO11s-Earth open vocabulary detection (DIOR finetuning)")
with gr.Row():
cam_input = gr.Image(type="numpy", sources=["webcam"], streaming=True, label="Webcam")
classes_input = gr.Textbox(label="New classes (comma-separated)", placeholder="e.g.: airplane, airport, tennis court")
output = gr.Image(label="Results", type="numpy", height=480) # Set height to 480
cam_input.stream(
process_frame,
inputs=[cam_input, classes_input],
outputs=output
)
# Launch Gradio app
demo.launch()
if __name__ == "__main__":
main()