Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
from PIL import Image | |
import math | |
# --- nag_app.pyから移植した機能 --- | |
# 翻訳ライブラリのインポート | |
from deep_translator import GoogleTranslator | |
from langdetect import detect | |
# NAG対応パイプラインのインポート | |
# 注: このコードを実行するには、nag_app.pyのHugging Face Spaceから | |
# `src`ディレクトリ(pipeline_flux_kontext_nag.pyとtransformer_flux.pyを含む)を | |
# このファイルと同じ階層に配置する必要があります。 | |
from src.pipeline_flux_kontext_nag import NAGFluxKontextPipeline | |
from src.transformer_flux import NAGFluxTransformer2DModel | |
# --- ここまでが移植部分 --- | |
# エラー解決のためにdiffusersの内部マッピングをインポート | |
from diffusers.loaders.peft import _SET_ADAPTER_SCALE_FN_MAPPING | |
# 定数の設定 | |
MAX_SEED = np.iinfo(np.int32).max | |
DEFAULT_NAG_NEGATIVE_PROMPT = "Low resolution, blurry, lack of details, big head" | |
OUTPUT_RESOLUTION = 1024 | |
# --- nag_app.pyから移植したモデル読み込み処理 --- | |
# NAG対応のKontextモデルをロード | |
transformer = NAGFluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-Kontext-dev", | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16, | |
) | |
pipe = NAGFluxKontextPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Kontext-dev", | |
transformer=transformer, | |
torch_dtype=torch.bfloat16, | |
) | |
pipe = pipe.to("cuda") | |
# --- ここまでが移植部分 --- | |
# --- LoRAの読み込み処理 (5つ) --- | |
print("Loading LoRA weights...") | |
# LoRA名とアダプター名のマッピング | |
LORA_MAPPING = { | |
"Hyper-SD": "hyper", | |
"Relighting": "relight", | |
"LoRA 3": "lora_3", | |
"LoRA 4": "lora_4", | |
"LoRA 5": "lora_5", | |
} | |
# 1. Hyper-SD LoRA | |
pipe.load_lora_weights( | |
"ByteDance/Hyper-SD", | |
weight_name="Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
adapter_name=LORA_MAPPING["Hyper-SD"] | |
) | |
# 2. Relighting LoRA | |
pipe.load_lora_weights( | |
"linoyts/relighting-kontext-dev-lora", | |
weight_name="relighting-kontext-dev-lora.safetensors", | |
adapter_name=LORA_MAPPING["Relighting"] | |
) | |
# 3. 追加のLoRA 3 (後で設定) | |
# ★ 注意: 以下のリポジトリ名とファイル名は仮のものです。後で正しいものに置き換えてください。 | |
try: | |
pipe.load_lora_weights( | |
"author/repo_name_3", # 例: "cagliostrolab/animagine-xl-3.0" | |
weight_name="lora_file_3.safetensors", # 例: "animagine-xl-3.0.safetensors" | |
adapter_name=LORA_MAPPING["LoRA 3"] | |
) | |
except Exception as e: | |
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[2]}. Please check repository and file names. Error:", e) | |
# 4. 追加のLoRA 4 (後で設定) | |
try: | |
pipe.load_lora_weights( | |
"author/repo_name_4", | |
weight_name="lora_file_4.safetensors", | |
adapter_name=LORA_MAPPING["LoRA 4"] | |
) | |
except Exception as e: | |
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[3]}. Please check repository and file names. Error:", e) | |
# 5. 追加のLoRA 5 (後で設定) | |
try: | |
pipe.load_lora_weights( | |
"author/repo_name_5", | |
weight_name="lora_file_5.safetensors", | |
adapter_name=LORA_MAPPING["LoRA 5"] | |
) | |
except Exception as e: | |
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[4]}. Please check repository and file names. Error:", e) | |
print("LoRA weights loading process finished.") | |
# --- ここまでが変更部分 --- | |
# カスタムモデルをdiffusersのLoRA対応表に登録する | |
_SET_ADAPTER_SCALE_FN_MAPPING[NAGFluxTransformer2DModel.__name__] = _SET_ADAPTER_SCALE_FN_MAPPING["FluxTransformer2DModel"] | |
print("Custom model 'NAGFluxTransformer2DModel' registered for LoRA.") | |
def round_to_multiple(number, multiple=8): | |
return multiple * round(number / multiple) | |
def concatenate_images(images, direction="horizontal"): | |
if not images: return None | |
valid_images = [img for img in images if img is not None] | |
if not valid_images: return None | |
if len(valid_images) == 1: return valid_images[0].convert("RGB") | |
valid_images = [img.convert("RGB") for img in valid_images] | |
if direction == "horizontal": | |
total_width = sum(img.width for img in valid_images) | |
max_height = max(img.height for img in valid_images) | |
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255)) | |
x_offset = 0 | |
for img in valid_images: | |
y_offset = (max_height - img.height) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
x_offset += img.width | |
else: | |
max_width = max(img.width for img in valid_images) | |
total_height = sum(img.height for img in valid_images) | |
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255)) | |
y_offset = 0 | |
for img in valid_images: | |
x_offset = (max_width - img.width) // 2 | |
concatenated.paste(img, (x_offset, y_offset)) | |
y_offset += img.height | |
return concatenated | |
# ★ infer関数の引数に negative_prompt を追加 | |
def infer(input_images, prompt, negative_prompt, seed, randomize_seed, guidance_scale, nag_negative_prompt, nag_scale, num_inference_steps, | |
# LoRAの有効/無効と強度を個別に受け取る | |
enable_lora1, weight_lora1, | |
enable_lora2, weight_lora2, | |
enable_lora3, weight_lora3, | |
enable_lora4, weight_lora4, | |
enable_lora5, weight_lora5, | |
progress=gr.Progress(track_tqdm=True)): | |
active_adapters = [] | |
active_weights = [] | |
lora_params = [ | |
(enable_lora1, weight_lora1, "Hyper-SD"), | |
(enable_lora2, weight_lora2, "Relighting"), | |
(enable_lora3, weight_lora3, "LoRA 3"), | |
(enable_lora4, weight_lora4, "LoRA 4"), | |
(enable_lora5, weight_lora5, "LoRA 5"), | |
] | |
for is_enabled, weight, name in lora_params: | |
if is_enabled: | |
adapter_name = LORA_MAPPING[name] | |
active_adapters.append(adapter_name) | |
active_weights.append(weight) | |
print(f"Applying {name} LoRA with weight {weight}") | |
if active_adapters: | |
pipe.set_adapters(active_adapters, adapter_weights=active_weights) | |
else: | |
print("No LoRA selected. Running without LoRA.") | |
pipe.disable_lora() | |
prompt = prompt.strip() | |
if prompt: | |
print(f"Original prompt: {prompt}") | |
try: | |
detected_lang = detect(prompt) | |
if detected_lang != 'en': | |
print(f"Detected language: {detected_lang}. Translating to English...") | |
translated_prompt = GoogleTranslator(source=detected_lang, target='en').translate(prompt) | |
prompt = translated_prompt | |
print(f"Translated prompt: {prompt}") | |
else: | |
print("Prompt is already in English.") | |
except Exception as e: | |
print(f"Warning: Translation or language detection failed: {e}. Using original prompt.") | |
# ★ negative_promptを処理するコードを追加 | |
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if input_images is None: | |
raise gr.Error("Please upload at least one image.") | |
if not isinstance(input_images, list): | |
input_images = [input_images] | |
valid_images = [img[0] for img in input_images if img is not None] | |
if not valid_images: | |
raise gr.Error("Please upload at least one valid image.") | |
if len(valid_images) == 1: | |
print("Single image detected. Calculating aspect-ratio aware dimensions.") | |
input_for_pipe = valid_images[0] | |
input_width, input_height = input_for_pipe.size | |
aspect_ratio = input_width / input_height | |
target_pixels = OUTPUT_RESOLUTION * OUTPUT_RESOLUTION | |
final_height = int(math.sqrt(target_pixels / aspect_ratio)) | |
final_width = int(aspect_ratio * final_height) | |
final_width = round_to_multiple(final_width, 8) | |
final_height = round_to_multiple(final_height, 8) | |
print(f"Output dimensions set to: {final_width}x{final_height}") | |
else: | |
print(f"Multiple ({len(valid_images)}) images detected. Using fixed 1024x1024 output.") | |
input_for_pipe = concatenate_images(valid_images, "horizontal") | |
if input_for_pipe is None: | |
raise gr.Error("Failed to process the input images.") | |
final_width = OUTPUT_RESOLUTION | |
final_height = OUTPUT_RESOLUTION | |
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources." | |
# ★ pipe()呼び出しに negative_prompt を追加 | |
image = pipe( | |
image=input_for_pipe, | |
prompt=final_prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
nag_negative_prompt=nag_negative_prompt, | |
nag_scale=nag_scale, | |
width=final_width, | |
height=final_height, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
pipe.disable_lora() | |
return image, seed, gr.update(visible=True) | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
.lora-row { | |
align-items: center; | |
margin-bottom: 8px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image with NAG | |
Compose a new image from multiple images using FLUX.1 Kontext, enhanced with Normalized Attention Guidance (NAG) and automatic prompt translation. | |
- **Single Image Input**: Output will match the input aspect ratio. | |
- **Multiple Image Inputs**: Output will be a fixed 1024x1024 resolution. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_images = gr.Gallery( | |
label="Upload image(s) for editing", | |
show_label=True, | |
elem_id="gallery_input", | |
columns=3, | |
rows=2, | |
object_fit="contain", | |
height="auto", | |
file_types=['image'], | |
type='pil' | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt (auto-translates to English)", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
# --- ★ UIを修正: 各LoRAコンポーネントを個別の変数として定義 --- | |
gr.Markdown("### LoRA Settings") | |
with gr.Row(elem_classes="lora-row"): | |
enable_lora1 = gr.Checkbox(label="Hyper-SD", value=True, scale=1) | |
weight_lora1 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.02, value=0.12, scale=3, visible=True) | |
with gr.Row(elem_classes="lora-row"): | |
enable_lora2 = gr.Checkbox(label="Relighting", value=False, scale=1) | |
weight_lora2 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=1.0, scale=3, visible=False) | |
with gr.Row(elem_classes="lora-row"): | |
enable_lora3 = gr.Checkbox(label="LoRA 3", value=False, scale=1) | |
weight_lora3 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False) | |
with gr.Row(elem_classes="lora-row"): | |
enable_lora4 = gr.Checkbox(label="LoRA 4", value=False, scale=1) | |
weight_lora4 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False) | |
with gr.Row(elem_classes="lora-row"): | |
enable_lora5 = gr.Checkbox(label="LoRA 5", value=False, scale=1) | |
weight_lora5 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False) | |
# --- ★ ここまでが変更部分 --- | |
gr.Markdown("### Generation Settings") | |
# ★ UIに negative_prompt を追加 | |
negative_prompt = gr.Text( | |
label="Negative Prompt (Standard)", | |
placeholder="Enter concepts to avoid (e.g., ugly, deformed)", | |
max_lines=2, | |
) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", | |
minimum=8, | |
maximum=50, | |
step=1, | |
value=8, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.25, | |
value=4.5, | |
) | |
nag_negative_prompt = gr.Text( | |
label="Negative Prompt for NAG", | |
value=DEFAULT_NAG_NEGATIVE_PROMPT, | |
max_lines=2, | |
placeholder="Enter concepts to avoid with NAG", | |
) | |
nag_scale = gr.Slider( | |
label="NAG Scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.25, | |
value=3.5 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False, interactive=False, format="png") | |
reuse_button = gr.Button("Reuse this image", visible=False) | |
# ★ イベントハンドラを更新: all_inputsに negative_prompt を追加 | |
all_inputs = [ | |
input_images, prompt, negative_prompt, seed, randomize_seed, guidance_scale, | |
nag_negative_prompt, nag_scale, num_inference_steps, | |
enable_lora1, weight_lora1, | |
enable_lora2, weight_lora2, | |
enable_lora3, weight_lora3, | |
enable_lora4, weight_lora4, | |
enable_lora5, weight_lora5, | |
] | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = all_inputs, | |
outputs = [result, seed, reuse_button] | |
) | |
# --- ★ ここまでが変更部分 --- | |
reuse_button.click( | |
fn = lambda image: [image] if image is not None else [], | |
inputs = [result], | |
outputs = [input_images] | |
) | |
# --- ★ 各チェックボックスとスライダーの表示を個別に連動させる --- | |
def update_visibility(is_checked): | |
return gr.update(visible=is_checked) | |
enable_lora1.change(fn=update_visibility, inputs=enable_lora1, outputs=weight_lora1) | |
enable_lora2.change(fn=update_visibility, inputs=enable_lora2, outputs=weight_lora2) | |
enable_lora3.change(fn=update_visibility, inputs=enable_lora3, outputs=weight_lora3) | |
enable_lora4.change(fn=update_visibility, inputs=enable_lora4, outputs=weight_lora4) | |
enable_lora5.change(fn=update_visibility, inputs=enable_lora5, outputs=weight_lora5) | |
# --- ★ ここまでが変更部分 --- | |
demo.launch() |